The process of human natural scene categorization consists of two correlated stages: visual perception and visual cognition of natural scenes.Inspired by this fact,we propose a biologically plausible approach for natu...The process of human natural scene categorization consists of two correlated stages: visual perception and visual cognition of natural scenes.Inspired by this fact,we propose a biologically plausible approach for natural scene image classification.This approach consists of one visual perception model and two visual cognition models.The visual perception model,composed of two steps,is used to extract discriminative features from natural scene images.In the first step,we mimic the oriented and bandpass properties of human primary visual cortex by a special complex wavelets transform,which can decompose a natural scene image into a series of 2D spatial structure signals.In the second step,a hybrid statistical feature extraction method is used to generate gist features from those 2D spatial structure signals.Then we design a cognitive feedback model to realize adaptive optimization for the visual perception model.At last,we build a multiple semantics based cognition model to imitate human cognitive mode in rapid natural scene categorization.Experiments on natural scene datasets show that the proposed method achieves high efficiency and accuracy for natural scene classification.展开更多
目的移动智能体在执行同步定位与地图构建(Simultaneous Localization and Mapping,SLAM)的复杂任务时,动态物体的干扰会导致特征点间的关联减弱,系统定位精度下降,为此提出一种面向室内动态场景下基于YOLOv5和几何约束的视觉SLAM算法...目的移动智能体在执行同步定位与地图构建(Simultaneous Localization and Mapping,SLAM)的复杂任务时,动态物体的干扰会导致特征点间的关联减弱,系统定位精度下降,为此提出一种面向室内动态场景下基于YOLOv5和几何约束的视觉SLAM算法。方法首先,以YOLOv5s为基础,将原有的CSPDarknet主干网络替换成轻量级的MobileNetV3网络,可以减少参数、加快运行速度,同时与ORB-SLAM2系统相结合,在提取ORB特征点的同时获取语义信息,并剔除先验的动态特征点。然后,结合光流法和对极几何约束对可能残存的动态特征点进一步剔除。最后,仅用静态特征点对相机位姿进行估计。结果在TUM数据集上的实验结果表明,与ORB-SLAM2相比,在高动态序列下的ATE和RPE都减少了90%以上,与DS-SLAM、Dyna-SLAM同类型系统相比,在保证定位精度和鲁棒性的同时,跟踪线程中处理一帧图像平均只需28.26 ms。结论该算法能够有效降低动态物体对实时SLAM过程造成的干扰,为实现更加智能化、自动化的包装流程提供了可能。展开更多
针对在动态环境中,视觉定位系统的定位精度和鲁棒性容易受到动态特征点影响的问题,提出了一种联合目标检测与深度信息的动态特征点去除方法.引入YOLOv7目标检测网络快速获得当前图像帧的目标类别及位置信息,加入坐标注意力(coordinate a...针对在动态环境中,视觉定位系统的定位精度和鲁棒性容易受到动态特征点影响的问题,提出了一种联合目标检测与深度信息的动态特征点去除方法.引入YOLOv7目标检测网络快速获得当前图像帧的目标类别及位置信息,加入坐标注意力(coordinate attention,CA)机制优化深度学习模型,提升网络目标检测精度.此外,提出了一种利用深度信息和对极几何约束的动态特征点优化策略.有效剔除了动态特征点,同时保留了尽量多的静态点,从而降低了动态点对系统定位精度和鲁棒性的影响.在公开的数据集TUM上进行实验验证.结果表明:与ORBSLAM2(oriented fast and rotated brief-SLAM)相比,所提方案在定位精度和鲁棒性上有明显优势.同时与动态同步定位和地图构建(dyna simultaneous localization and mapping,DynaSLAM)相比,定位精度基本持平,但在运行速度上实现了显著提升.展开更多
文摘The process of human natural scene categorization consists of two correlated stages: visual perception and visual cognition of natural scenes.Inspired by this fact,we propose a biologically plausible approach for natural scene image classification.This approach consists of one visual perception model and two visual cognition models.The visual perception model,composed of two steps,is used to extract discriminative features from natural scene images.In the first step,we mimic the oriented and bandpass properties of human primary visual cortex by a special complex wavelets transform,which can decompose a natural scene image into a series of 2D spatial structure signals.In the second step,a hybrid statistical feature extraction method is used to generate gist features from those 2D spatial structure signals.Then we design a cognitive feedback model to realize adaptive optimization for the visual perception model.At last,we build a multiple semantics based cognition model to imitate human cognitive mode in rapid natural scene categorization.Experiments on natural scene datasets show that the proposed method achieves high efficiency and accuracy for natural scene classification.
文摘目的移动智能体在执行同步定位与地图构建(Simultaneous Localization and Mapping,SLAM)的复杂任务时,动态物体的干扰会导致特征点间的关联减弱,系统定位精度下降,为此提出一种面向室内动态场景下基于YOLOv5和几何约束的视觉SLAM算法。方法首先,以YOLOv5s为基础,将原有的CSPDarknet主干网络替换成轻量级的MobileNetV3网络,可以减少参数、加快运行速度,同时与ORB-SLAM2系统相结合,在提取ORB特征点的同时获取语义信息,并剔除先验的动态特征点。然后,结合光流法和对极几何约束对可能残存的动态特征点进一步剔除。最后,仅用静态特征点对相机位姿进行估计。结果在TUM数据集上的实验结果表明,与ORB-SLAM2相比,在高动态序列下的ATE和RPE都减少了90%以上,与DS-SLAM、Dyna-SLAM同类型系统相比,在保证定位精度和鲁棒性的同时,跟踪线程中处理一帧图像平均只需28.26 ms。结论该算法能够有效降低动态物体对实时SLAM过程造成的干扰,为实现更加智能化、自动化的包装流程提供了可能。
文摘针对在动态环境中,视觉定位系统的定位精度和鲁棒性容易受到动态特征点影响的问题,提出了一种联合目标检测与深度信息的动态特征点去除方法.引入YOLOv7目标检测网络快速获得当前图像帧的目标类别及位置信息,加入坐标注意力(coordinate attention,CA)机制优化深度学习模型,提升网络目标检测精度.此外,提出了一种利用深度信息和对极几何约束的动态特征点优化策略.有效剔除了动态特征点,同时保留了尽量多的静态点,从而降低了动态点对系统定位精度和鲁棒性的影响.在公开的数据集TUM上进行实验验证.结果表明:与ORBSLAM2(oriented fast and rotated brief-SLAM)相比,所提方案在定位精度和鲁棒性上有明显优势.同时与动态同步定位和地图构建(dyna simultaneous localization and mapping,DynaSLAM)相比,定位精度基本持平,但在运行速度上实现了显著提升.
基金“深时数字地球”(Deep-time Digital Earth,DDE)国际大科学计划国家科技重大专项项目课题“苏里格低渗透致密砂岩储层结构重建技术”(编号:2016ZX05050005)成都理工大学研究生教育教学改革重点项目“实景三维数字露头实践教学平台研究、实现与示范”(编号:2022YJG112)联合资助。