The population ratio between the excited states of rubidium in the electrodeless discharge rubidium vapour lamp is calculated according to the near-infrared spectra in the region of 780-1550 nm. By using a 1529 nm las...The population ratio between the excited states of rubidium in the electrodeless discharge rubidium vapour lamp is calculated according to the near-infrared spectra in the region of 780-1550 nm. By using a 1529 nm laser, we measure the density of natural rubidium atoms at the 5P3/2 level. The populations of different excited states are then clarified.展开更多
Brain oscillations are vital to cognitive functions,while disrupted oscillatory activity is linked to various brain disorders.Although high-frequency neural oscillations(>1 Hz)have been extensively studied in cogni...Brain oscillations are vital to cognitive functions,while disrupted oscillatory activity is linked to various brain disorders.Although high-frequency neural oscillations(>1 Hz)have been extensively studied in cognition,the neural mechanisms underlying low-frequency hemodynamic oscillations(LFHO)<1 Hz have not yet been fully explored.One way to examine oscillatory neural dynamics is to use a facial expression(FE)paradigm to induce steady-state visual evoked potentials(SSVEPs),which has been used in electroencephalography studies of high-frequency brain oscillation activity.In this study,LFHO during SSVEP-inducing periodic flickering stimuli presentation were inspected using functional near-infrared spectroscopy(fNIRS),in which hemodynamic responses in the prefrontal cortex were recorded while participants were passively viewing dynamic FEs flickering at 0.2 Hz.The fast Fourier analysis results demonstrated that the power exhibited monochronic peaks at 0.2 Hz across all channels,indicating that the periodic events successfully elicited LFHO in the prefrontal cortex.More importantly,measurement of LFHO can effectively distinguish the brain activation difference between different cognitive conditions,with happy FE presentation showing greater LFHO power than neutral FE presentation.These results demonstrate that stimuli flashing at a given frequency can induce LFHO in the prefrontal cortex,which provides new insights into the cognitive mechanisms involved in slow oscillation.展开更多
The deficiency theories of dyslexia are quite contradictory and the cross-cultural studies in recent years mainly focused on whether the dyslexics among cultures shared the same cognitive profile or just based on the ...The deficiency theories of dyslexia are quite contradictory and the cross-cultural studies in recent years mainly focused on whether the dyslexics among cultures shared the same cognitive profile or just based on the language.This study used Near-Infrared Spectroscopy (NIRS) imaging to measure the regional cerebral blood volume (BV) and the changes of cerebral activation in the left prefrontal cortex of 12 Chinese dyslexic children and their 12 age-matched normal controls during the Paced Vis-ual Serial Addition Test (PVSAT).Results showed that the scores of PVSAT of dyslexic children were significantly lower than those of the normal children (t=3.33,P<0.01).The activations of the left pre-frontal cortex in the normal group were significantly greater than those of dyslexic children (all P<0.01).Our results indicated that Chinese dyslexia had a general deficiency in working memory and this may be caused by the abnormal metabolic activity of brain blood volume in the left prefrontal cortex and the deficits in brain function might be the basis of neuropathology of Chinese dyslexia.Present study sup-ports the difference on brain activation of dyslexics from different languages may be caused by the same cognitive system related to reading.展开更多
In this study,functional near-infrared spectroscopy(fNIRS)is utilized to measure the hemodynamic responses(HRs)in the visual cortex of 14 subjects(aged 22–34 years)viewing the primary red,green,and blue(RGB)colors di...In this study,functional near-infrared spectroscopy(fNIRS)is utilized to measure the hemodynamic responses(HRs)in the visual cortex of 14 subjects(aged 22–34 years)viewing the primary red,green,and blue(RGB)colors displayed on a white screen by a beam projector.The spatiotemporal characteristics of their oxygenated and deoxygenated hemoglobins(HbO and HbR)in the visual cortex are measured using a 15-source and 15-detector optode con¯guration.To see whether the activation maps upon RGB-color stimuli can be distinguished or not,the t-values of individual channels are averaged over 14 subjects.To¯nd the best combination of two features for classi¯cation,the HRs of activated channels are averaged over nine trials.The HbO mean,peak,slope,skewness and kurtosis values during 2–7 s window for a given 10 s stimulation period are analyzed.Finally,the linear discriminant analysis(LDA)for classifying three classes is applied.Individually,the best classi¯cation accuracy obtained with slope-skewness features was 74.07%(Subject 1),whereas the best overall over 14 subjects was 55.29%with peak-skewness combination.Noting that the chance level of 3-class classi¯cation is 33.33%,it can be said that RGB colors can be distinguished.The overall results reveal that fNIRS can be used for monitoring purposes of the HR patterns in the human visual cortex.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10874009 and 11074011)
文摘The population ratio between the excited states of rubidium in the electrodeless discharge rubidium vapour lamp is calculated according to the near-infrared spectra in the region of 780-1550 nm. By using a 1529 nm laser, we measure the density of natural rubidium atoms at the 5P3/2 level. The populations of different excited states are then clarified.
基金University of Macao,Nos.MYRG2019-00082-FHS and MYRG2018-00081-FHSMacao Science and Technology Development Fund,No.FDCT 025/2015/A1 and FDCT 0011/2018/A1.
文摘Brain oscillations are vital to cognitive functions,while disrupted oscillatory activity is linked to various brain disorders.Although high-frequency neural oscillations(>1 Hz)have been extensively studied in cognition,the neural mechanisms underlying low-frequency hemodynamic oscillations(LFHO)<1 Hz have not yet been fully explored.One way to examine oscillatory neural dynamics is to use a facial expression(FE)paradigm to induce steady-state visual evoked potentials(SSVEPs),which has been used in electroencephalography studies of high-frequency brain oscillation activity.In this study,LFHO during SSVEP-inducing periodic flickering stimuli presentation were inspected using functional near-infrared spectroscopy(fNIRS),in which hemodynamic responses in the prefrontal cortex were recorded while participants were passively viewing dynamic FEs flickering at 0.2 Hz.The fast Fourier analysis results demonstrated that the power exhibited monochronic peaks at 0.2 Hz across all channels,indicating that the periodic events successfully elicited LFHO in the prefrontal cortex.More importantly,measurement of LFHO can effectively distinguish the brain activation difference between different cognitive conditions,with happy FE presentation showing greater LFHO power than neutral FE presentation.These results demonstrate that stimuli flashing at a given frequency can induce LFHO in the prefrontal cortex,which provides new insights into the cognitive mechanisms involved in slow oscillation.
基金supported by a grant from National Natural Science Foundation of China (No. 30872132)
文摘The deficiency theories of dyslexia are quite contradictory and the cross-cultural studies in recent years mainly focused on whether the dyslexics among cultures shared the same cognitive profile or just based on the language.This study used Near-Infrared Spectroscopy (NIRS) imaging to measure the regional cerebral blood volume (BV) and the changes of cerebral activation in the left prefrontal cortex of 12 Chinese dyslexic children and their 12 age-matched normal controls during the Paced Vis-ual Serial Addition Test (PVSAT).Results showed that the scores of PVSAT of dyslexic children were significantly lower than those of the normal children (t=3.33,P<0.01).The activations of the left pre-frontal cortex in the normal group were significantly greater than those of dyslexic children (all P<0.01).Our results indicated that Chinese dyslexia had a general deficiency in working memory and this may be caused by the abnormal metabolic activity of brain blood volume in the left prefrontal cortex and the deficits in brain function might be the basis of neuropathology of Chinese dyslexia.Present study sup-ports the difference on brain activation of dyslexics from different languages may be caused by the same cognitive system related to reading.
基金the China Scholarship Council(CSC)and the Convergence Technology Development Program for Bionic Arm through the National Research Foundation of Korea under the auspices of the Ministry of Science,ICT&Future Planning,Republic of Korea(grant no.2016M3C1B2912986).
文摘In this study,functional near-infrared spectroscopy(fNIRS)is utilized to measure the hemodynamic responses(HRs)in the visual cortex of 14 subjects(aged 22–34 years)viewing the primary red,green,and blue(RGB)colors displayed on a white screen by a beam projector.The spatiotemporal characteristics of their oxygenated and deoxygenated hemoglobins(HbO and HbR)in the visual cortex are measured using a 15-source and 15-detector optode con¯guration.To see whether the activation maps upon RGB-color stimuli can be distinguished or not,the t-values of individual channels are averaged over 14 subjects.To¯nd the best combination of two features for classi¯cation,the HRs of activated channels are averaged over nine trials.The HbO mean,peak,slope,skewness and kurtosis values during 2–7 s window for a given 10 s stimulation period are analyzed.Finally,the linear discriminant analysis(LDA)for classifying three classes is applied.Individually,the best classi¯cation accuracy obtained with slope-skewness features was 74.07%(Subject 1),whereas the best overall over 14 subjects was 55.29%with peak-skewness combination.Noting that the chance level of 3-class classi¯cation is 33.33%,it can be said that RGB colors can be distinguished.The overall results reveal that fNIRS can be used for monitoring purposes of the HR patterns in the human visual cortex.