It is of great significance to rapidly detect targets in large-field remote sensing images,with limited computation resources.Employing relative achievements of visual attention in perception psychology,this paper pro...It is of great significance to rapidly detect targets in large-field remote sensing images,with limited computation resources.Employing relative achievements of visual attention in perception psychology,this paper proposes a hierarchical attention based model for target detection.Specifically,at the preattention stage,before getting salient regions,a fast computational approach is applied to build a saliency map.After that,the focus of attention(FOA) can be quickly obtained to indicate the salient objects.Then,at the attention stage,under the FOA guidance,the high-level visual features of the region of interest are extracted in parallel.Finally,at the post-attention stage,by integrating these parallel and independent visual attributes,a decision-template based classifier fusion strategy is proposed to discriminate the task-related targets from the other extracted salient objects.For comparison,experiments on ship detection are done for validating the effectiveness and feasibility of the proposed model.展开更多
This paper introduces an approach for visual tracking of multi-target with occlusion occurrence. Based on the author's previous work in which the Overlap Coefficient (OC) is used to detect the occlusion, in this p...This paper introduces an approach for visual tracking of multi-target with occlusion occurrence. Based on the author's previous work in which the Overlap Coefficient (OC) is used to detect the occlusion, in this paper a method of combining Bhattacharyya Coefficient (BC) and Kalman filter innovation term is proposed as the criteria for jointly detecting the occlusion occurrence. Fragmentation of target is introduced in order to closely monitor the occlusion development. In the course of occlusion, the Kalman predictor is applied to determine the location of the occluded target, and the criterion for checking the re-appearance of the occluded target is also presented. The proposed approach is put to test on a standard video sequence, suggesting the satisfactory performance in multi-target tracking.展开更多
In visible light positioning systems,some scholars have proposed target tracking algorithms to balance the relationship among positioning accuracy,real-time performance,and robustness.However,there are still two probl...In visible light positioning systems,some scholars have proposed target tracking algorithms to balance the relationship among positioning accuracy,real-time performance,and robustness.However,there are still two problems:(1)When the captured LED disappears and the uncertain LED reappears,existing tracking algorithms may recognize the landmark in error;(2)The receiver is not always able to achieve positioning under various moving statuses.In this paper,we propose an enhanced visual target tracking algorithm to solve the above problems.First,we design the lightweight recognition/demodulation mechanism,which combines Kalman filtering with simple image preprocessing to quickly track and accurately demodulate the landmark.Then,we use the Gaussian mixture model and the LED color feature to enable the system to achieve positioning,when the receiver is under various moving statuses.Experimental results show that our system can achieve high-precision dynamic positioning and improve the system’s comprehensive performance.展开更多
The electromagnetic scattering principles of geological radar targets and various influential factors were discussed, and the importance of researching into the electromagnetic scattering features of the targets to th...The electromagnetic scattering principles of geological radar targets and various influential factors were discussed, and the importance of researching into the electromagnetic scattering features of the targets to the actual prospecting task was pointed out.展开更多
Target tracking is one typical application of visual servoing technology. It is still a difficult task to track high speed target with current visual servo system. The improvement of visual servoing scheme is strongly...Target tracking is one typical application of visual servoing technology. It is still a difficult task to track high speed target with current visual servo system. The improvement of visual servoing scheme is strongly required. A position-based visual servo parallel system is presented for tracking target with high speed. A local Frenet frame is assigned to the sampling point of spatial trajectory. Position estimation is formed by the differential features of intrinsic geometry, and orientation estimation is formed by homogenous transformation. The time spent for searching and processing can be greatly reduced by shifting the window according to features location prediction. The simulation results have demonstrated the ability of the system to track spatial moving object.展开更多
Aiming at technical difficulties in feature extraction for the inverse synthetic aperture radar (ISAR) target recognition, this paper imports the concept of visual perception and presents a novel method, which is ba...Aiming at technical difficulties in feature extraction for the inverse synthetic aperture radar (ISAR) target recognition, this paper imports the concept of visual perception and presents a novel method, which is based on the combination of non-negative sparse coding (NNSC) and linear discrimination optimization, to recognize targets in ISAR images. This method implements NNSC on the matrix constituted by the intensities of pixels in ISAR images for training, to obtain non-negative sparse bases which characterize sparse distribution of strong scattering centers. Then this paper chooses sparse bases via optimization criteria and calculates the corresponding non-negative sparse codes of both training and test images as the feature vectors, which are input into k neighbors classifier to realize recognition finally. The feasibility and robustness of the proposed method are proved by comparing with the template matching, principle component analysis (PCA) and non-negative matrix factorization (NMF) via simulations.展开更多
The study investigated the burden and severity of depression in relationship with visual impairment in Nigeria. Four hundred (400) male and female in and outpatients with various degrees of visual impairment attending...The study investigated the burden and severity of depression in relationship with visual impairment in Nigeria. Four hundred (400) male and female in and outpatients with various degrees of visual impairment attending a clinic in the department of ophthalmology, Enugu State University Teaching Hospital, Parklane Enugu were used. They were selected through the purposive sampling method. The socio-demographic questionnaire, Beck depression inventory and WHO-VFQ (visual function questionnaire were used to collect data. The result showed that the domains of vision-related health status were negatively related to depression at (-0.4) also general vision (-0.09), ocular pain (-0.23), vision-specific mental health (-0.03), role difficulties (-0.03), role difficulties (-0.03), dependency (-0.09), color vision (-0.30) and peripheral vision (-0.13) and vision-specific social functioning. Domains of near acuity and vision specific social functioning were positively related, but the only statistically significant domain was vision-specific social functioning at (0.30, p 0.001). It was suggested that hospitals, families and other social groups should ensure that they provide social and emotional support to the visually impaired using their facilities.展开更多
In order to achieve the goal that unmanned aerial vehicle(UAV)automatically positioning during power inspection,a visual positioning method which utilizes encoded sign as cooperative target is proposed.Firstly,we disc...In order to achieve the goal that unmanned aerial vehicle(UAV)automatically positioning during power inspection,a visual positioning method which utilizes encoded sign as cooperative target is proposed.Firstly,we discuss how to design the encoded sign and propose a robust decoding algorithm based on contour.Secondly,the Adaboost algorithm is used to train a classifier which can detect the encoded sign from image.Lastly,the position of UAV can be calculated by using the projective relation between the object points and their corresponding image points.Experiment includes two parts.First,simulated video data is used to verify the feasibility of the proposed method,and the results show that the average absolute error in each direction is below 0.02 m.Second,a video,acquired from an actual UAV flight,is used to calculate the position of UAV.The results show that the calculated trajectory is consistent with the actual flight path.The method runs at a speed of 0.153 sper frame.展开更多
"视觉词袋"(Bag of Visual Words,BOV)算法是一种有效的基于语义特征表达的物体识别算法。针对传统BOV模型存在的不足,综合利用SAR图像的灰度和纹理特征,提出基于感兴趣目标(Target of Interest,TOI)的"视觉词袋"..."视觉词袋"(Bag of Visual Words,BOV)算法是一种有效的基于语义特征表达的物体识别算法。针对传统BOV模型存在的不足,综合利用SAR图像的灰度和纹理特征,提出基于感兴趣目标(Target of Interest,TOI)的"视觉词袋"算法。首先,对训练图像进行TOI选取,用灰度共生矩阵模型提取TOI的纹理特征,再结合灰度特征,组成多维特征向量集,以簇内相似度最高、数据分布密度最大为准则,生成"视觉词袋"。其次,对测试图像,依据已生成的"视觉词袋",采用支持向量机(Support Vector Machine,SVM)分类器,实现SAR图像感兴趣目标的有效分类。实验结果表明,与传统的"视觉词袋"构建算法相比,该算法在分类正确率提高的同时,能够在训练图像较少的情况下达到良好的分类效果。展开更多
基金supported by the National Natural Science Foundation of China (40871157)
文摘It is of great significance to rapidly detect targets in large-field remote sensing images,with limited computation resources.Employing relative achievements of visual attention in perception psychology,this paper proposes a hierarchical attention based model for target detection.Specifically,at the preattention stage,before getting salient regions,a fast computational approach is applied to build a saliency map.After that,the focus of attention(FOA) can be quickly obtained to indicate the salient objects.Then,at the attention stage,under the FOA guidance,the high-level visual features of the region of interest are extracted in parallel.Finally,at the post-attention stage,by integrating these parallel and independent visual attributes,a decision-template based classifier fusion strategy is proposed to discriminate the task-related targets from the other extracted salient objects.For comparison,experiments on ship detection are done for validating the effectiveness and feasibility of the proposed model.
基金Supported by the Program for Technology Innovation Team of Ningbo Government (No. 2011B81002)the Ningbo University Science Research Foundation (No.xkl11075)
文摘This paper introduces an approach for visual tracking of multi-target with occlusion occurrence. Based on the author's previous work in which the Overlap Coefficient (OC) is used to detect the occlusion, in this paper a method of combining Bhattacharyya Coefficient (BC) and Kalman filter innovation term is proposed as the criteria for jointly detecting the occlusion occurrence. Fragmentation of target is introduced in order to closely monitor the occlusion development. In the course of occlusion, the Kalman predictor is applied to determine the location of the occluded target, and the criterion for checking the re-appearance of the occluded target is also presented. The proposed approach is put to test on a standard video sequence, suggesting the satisfactory performance in multi-target tracking.
基金supported by the Guangdong Basic and Applied Basic Research Foundation No.2021A1515110958National Natural Science Foundation of China No.62202215+1 种基金SYLU introduced high-level talents scientific research support plan,Chongqing University Innovation Research Group(CXQT21019)Chongqing Talents Project(CQYC201903048)。
文摘In visible light positioning systems,some scholars have proposed target tracking algorithms to balance the relationship among positioning accuracy,real-time performance,and robustness.However,there are still two problems:(1)When the captured LED disappears and the uncertain LED reappears,existing tracking algorithms may recognize the landmark in error;(2)The receiver is not always able to achieve positioning under various moving statuses.In this paper,we propose an enhanced visual target tracking algorithm to solve the above problems.First,we design the lightweight recognition/demodulation mechanism,which combines Kalman filtering with simple image preprocessing to quickly track and accurately demodulate the landmark.Then,we use the Gaussian mixture model and the LED color feature to enable the system to achieve positioning,when the receiver is under various moving statuses.Experimental results show that our system can achieve high-precision dynamic positioning and improve the system’s comprehensive performance.
文摘The electromagnetic scattering principles of geological radar targets and various influential factors were discussed, and the importance of researching into the electromagnetic scattering features of the targets to the actual prospecting task was pointed out.
基金This project is supported by National Electric Power Corporation Foundation of China(No.SPKJ010-27).
文摘Target tracking is one typical application of visual servoing technology. It is still a difficult task to track high speed target with current visual servo system. The improvement of visual servoing scheme is strongly required. A position-based visual servo parallel system is presented for tracking target with high speed. A local Frenet frame is assigned to the sampling point of spatial trajectory. Position estimation is formed by the differential features of intrinsic geometry, and orientation estimation is formed by homogenous transformation. The time spent for searching and processing can be greatly reduced by shifting the window according to features location prediction. The simulation results have demonstrated the ability of the system to track spatial moving object.
基金supported by the Prominent Youth Fund of the National Natural Science Foundation of China (61025006)
文摘Aiming at technical difficulties in feature extraction for the inverse synthetic aperture radar (ISAR) target recognition, this paper imports the concept of visual perception and presents a novel method, which is based on the combination of non-negative sparse coding (NNSC) and linear discrimination optimization, to recognize targets in ISAR images. This method implements NNSC on the matrix constituted by the intensities of pixels in ISAR images for training, to obtain non-negative sparse bases which characterize sparse distribution of strong scattering centers. Then this paper chooses sparse bases via optimization criteria and calculates the corresponding non-negative sparse codes of both training and test images as the feature vectors, which are input into k neighbors classifier to realize recognition finally. The feasibility and robustness of the proposed method are proved by comparing with the template matching, principle component analysis (PCA) and non-negative matrix factorization (NMF) via simulations.
文摘The study investigated the burden and severity of depression in relationship with visual impairment in Nigeria. Four hundred (400) male and female in and outpatients with various degrees of visual impairment attending a clinic in the department of ophthalmology, Enugu State University Teaching Hospital, Parklane Enugu were used. They were selected through the purposive sampling method. The socio-demographic questionnaire, Beck depression inventory and WHO-VFQ (visual function questionnaire were used to collect data. The result showed that the domains of vision-related health status were negatively related to depression at (-0.4) also general vision (-0.09), ocular pain (-0.23), vision-specific mental health (-0.03), role difficulties (-0.03), role difficulties (-0.03), dependency (-0.09), color vision (-0.30) and peripheral vision (-0.13) and vision-specific social functioning. Domains of near acuity and vision specific social functioning were positively related, but the only statistically significant domain was vision-specific social functioning at (0.30, p 0.001). It was suggested that hospitals, families and other social groups should ensure that they provide social and emotional support to the visually impaired using their facilities.
基金supported by the National Key Research Projects(No.2016YFB0501403)the National Demonstration Center for Experimental Remote Sensing&Information Engineering(Wuhan University)
文摘In order to achieve the goal that unmanned aerial vehicle(UAV)automatically positioning during power inspection,a visual positioning method which utilizes encoded sign as cooperative target is proposed.Firstly,we discuss how to design the encoded sign and propose a robust decoding algorithm based on contour.Secondly,the Adaboost algorithm is used to train a classifier which can detect the encoded sign from image.Lastly,the position of UAV can be calculated by using the projective relation between the object points and their corresponding image points.Experiment includes two parts.First,simulated video data is used to verify the feasibility of the proposed method,and the results show that the average absolute error in each direction is below 0.02 m.Second,a video,acquired from an actual UAV flight,is used to calculate the position of UAV.The results show that the calculated trajectory is consistent with the actual flight path.The method runs at a speed of 0.153 sper frame.
文摘"视觉词袋"(Bag of Visual Words,BOV)算法是一种有效的基于语义特征表达的物体识别算法。针对传统BOV模型存在的不足,综合利用SAR图像的灰度和纹理特征,提出基于感兴趣目标(Target of Interest,TOI)的"视觉词袋"算法。首先,对训练图像进行TOI选取,用灰度共生矩阵模型提取TOI的纹理特征,再结合灰度特征,组成多维特征向量集,以簇内相似度最高、数据分布密度最大为准则,生成"视觉词袋"。其次,对测试图像,依据已生成的"视觉词袋",采用支持向量机(Support Vector Machine,SVM)分类器,实现SAR图像感兴趣目标的有效分类。实验结果表明,与传统的"视觉词袋"构建算法相比,该算法在分类正确率提高的同时,能够在训练图像较少的情况下达到良好的分类效果。