Medical Internet of Things(IoT)devices are becoming more and more common in healthcare.This has created a huge need for advanced predictive health modeling strategies that can make good use of the growing amount of mu...Medical Internet of Things(IoT)devices are becoming more and more common in healthcare.This has created a huge need for advanced predictive health modeling strategies that can make good use of the growing amount of multimodal data to find potential health risks early and help individuals in a personalized way.Existing methods,while useful,have limitations in predictive accuracy,delay,personalization,and user interpretability,requiring a more comprehensive and efficient approach to harness modern medical IoT devices.MAIPFE is a multimodal approach integrating pre-emptive analysis,personalized feature selection,and explainable AI for real-time health monitoring and disease detection.By using AI for early disease detection,personalized health recommendations,and transparency,healthcare will be transformed.The Multimodal Approach Integrating Pre-emptive Analysis,Personalized Feature Selection,and Explainable AI(MAIPFE)framework,which combines Firefly Optimizer,Recurrent Neural Network(RNN),Fuzzy C Means(FCM),and Explainable AI,improves disease detection precision over existing methods.Comprehensive metrics show the model’s superiority in real-time health analysis.The proposed framework outperformed existing models by 8.3%in disease detection classification precision,8.5%in accuracy,5.5%in recall,2.9%in specificity,4.5%in AUC(Area Under the Curve),and 4.9%in delay reduction.Disease prediction precision increased by 4.5%,accuracy by 3.9%,recall by 2.5%,specificity by 3.5%,AUC by 1.9%,and delay levels decreased by 9.4%.MAIPFE can revolutionize healthcare with preemptive analysis,personalized health insights,and actionable recommendations.The research shows that this innovative approach improves patient outcomes and healthcare efficiency in the real world.展开更多
Neuromuscular diseases present profound challenges to individuals and healthcare systems worldwide, profoundly impacting motor functions. This research provides a comprehensive exploration of how artificial intelligen...Neuromuscular diseases present profound challenges to individuals and healthcare systems worldwide, profoundly impacting motor functions. This research provides a comprehensive exploration of how artificial intelligence (AI) technology is revolutionizing rehabilitation for individuals with neuromuscular disorders. Through an extensive review, this paper elucidates a wide array of AI-driven interventions spanning robotic-assisted therapy, virtual reality rehabilitation, and intricately tailored machine learning algorithms. The aim is to delve into the nuanced applications of AI, unlocking its transformative potential in optimizing personalized treatment plans for those grappling with the complexities of neuromuscular diseases. By examining the multifaceted intersection of AI and rehabilitation, this paper not only contributes to our understanding of cutting-edge advancements but also envisions a future where technological innovations play a pivotal role in alleviating the challenges posed by neuromuscular diseases. From employing neural-fuzzy adaptive controllers for precise trajectory tracking amidst uncertainties to utilizing machine learning algorithms for recognizing patient motor intentions and adapting training accordingly, this research encompasses a holistic approach towards harnessing AI for enhanced rehabilitation outcomes. By embracing the synergy between AI and rehabilitation, we pave the way for a future where individuals with neuromuscular disorders can access tailored, effective, and technologically-driven interventions to improve their quality of life and functional independence.展开更多
Intelligent personal assistants play a pivotal role in in-vehicle systems,significantly enhancing life efficiency,driving safety,and decision-making support.In this study,the multi-modal design elements of intelligent...Intelligent personal assistants play a pivotal role in in-vehicle systems,significantly enhancing life efficiency,driving safety,and decision-making support.In this study,the multi-modal design elements of intelligent personal assistants within the context of visual,auditory,and somatosensory interactions with drivers were discussed.Their impact on the driver’s psychological state through various modes such as visual imagery,voice interaction,and gesture interaction were explored.The study also introduced innovative designs for in-vehicle intelligent personal assistants,incorporating design principles such as driver-centricity,prioritizing passenger safety,and utilizing timely feedback as a criterion.Additionally,the study employed design methods like driver behavior research and driving situation analysis to enhance the emotional connection between drivers and their vehicles,ultimately improving driver satisfaction and trust.展开更多
Background Intelligent garments,a burgeoning class of wearable devices,have extensive applications in domains such as sports training and medical rehabilitation.Nonetheless,existing research in the smart wearables dom...Background Intelligent garments,a burgeoning class of wearable devices,have extensive applications in domains such as sports training and medical rehabilitation.Nonetheless,existing research in the smart wearables domain predominantly emphasizes sensor functionality and quantity,often skipping crucial aspects related to user experience and interaction.Methods To address this gap,this study introduces a novel real-time 3D interactive system based on intelligent garments.The system utilizes lightweight sensor modules to collect human motion data and introduces a dual-stream fusion network based on pulsed neural units to classify and recognize human movements,thereby achieving real-time interaction between users and sensors.Additionally,the system incorporates 3D human visualization functionality,which visualizes sensor data and recognizes human actions as 3D models in real time,providing accurate and comprehensive visual feedback to help users better understand and analyze the details and features of human motion.This system has significant potential for applications in motion detection,medical monitoring,virtual reality,and other fields.The accurate classification of human actions contributes to the development of personalized training plans and injury prevention strategies.Conclusions This study has substantial implications in the domains of intelligent garments,human motion monitoring,and digital twin visualization.The advancement of this system is expected to propel the progress of wearable technology and foster a deeper comprehension of human motion.展开更多
The recent increase in the use of artificial intelligence has led to fundamental changes in the development of training and teaching methods for executive education. However, the success of artificial intelligence in ...The recent increase in the use of artificial intelligence has led to fundamental changes in the development of training and teaching methods for executive education. However, the success of artificial intelligence in regional centers for teaching and training professions will depend on the acceptance of this technology by young executive trainees. This article discusses the potential benefits of adopting AI in executive training institutions in Morocco, specifically focusing on CRMEF Casablanca Settat. Based on the Unified Theory of Acceptance and Use of Technology (UTAUT) (Venkatesh et al., 2003), this study proposes a model to identify the factors influencing the acceptance of artificial intelligence in regional centers for teaching professions and training in Morocco. To achieve this, a structural equation modeling approach was used to quantitatively describe the impact of each factor on AI adoption, utilizing data collected from 173 young executive trainees. The results indicate that perceived ease of use, perceived usefulness, trainer influence, and personal innovativeness influence the intention to use artificial intelligence. Our research provides managers of CRMEFs with a set of practical recommendations to enhance the implementation conditions of an artificial intelligence system. It aims to understand which factors should be considered in designing an artificial intelligence system within regional centers for teaching professions and training (CRMEFs).展开更多
Artificial Intelligence (AI) expands its recognition rapidly through the past few years in the context of generating content dynamically, remarkably challenging the human creativity. This study aims to evaluate the ef...Artificial Intelligence (AI) expands its recognition rapidly through the past few years in the context of generating content dynamically, remarkably challenging the human creativity. This study aims to evaluate the efficacy of AI in enhancing personal branding for musicians, particularly in crafting brand images based on emotions received from the artist’s music will improve the audience perceptions regarding the artist’s brand. Study used a quantitative approach for the research, gathering primary data from the survey of 191 people—music lovers, musicians and music producers. The survey focuses on preferences, perceptions, and behaviours related to music consumption and artist branding. The study results demonstrate the awareness and understanding of AI’s role in personal branding within the music industry. Also, results indicate that such an adaptive approach enhances audience perceptions of the artist and strengthens emotional connections. Furthermore, over 50% of the participants indicated a desire to attend live events where an artist’s brand image adapts dynamically to their emotions. The study focuses on novel approaches in personal branding based on the interaction of AI-driven emotional data. In contrast to traditional branding concepts, this study indicates that AI can suggest dynamic and emotionally resonant brand identities for artists. The real time audience response gives proper guidance for the decision-making. This study enriches the knowledge of AI’s applicability to branding processes in the context of the music industry and opens the possibilities for additional advancements in building emotionally appealing brand identities.展开更多
With the development of ordnance technology,the survival and safety of individual combatants in hightech warfare are under serious threat,and the Personal Protective Equipment(PPE),as an important guarantee to reduce ...With the development of ordnance technology,the survival and safety of individual combatants in hightech warfare are under serious threat,and the Personal Protective Equipment(PPE),as an important guarantee to reduce casualties and maintain military combat effectiveness,is widely developed.This paper systematically reviewed various PPE based on individual combat through literature research and comprehensive discussion,and introduced in detail the latest application progress of PPE in terms of material and technology from three aspects:individual integrated protection system,traditional protection equipment,and intelligent protection equipment,respectively,and discussed in depth the functional improvement and optimization status brought by advanced technology for PPE,focusing on the achievements of individual equipment technology application.Finally,the problems and technical bottlenecks in the development of PPE were analyzed and summarized,and the development trend of PPE were pointed out.The results of the review will provide a forward-looking reference for the current development of individual PPE,and are important guidance for the design and technological innovation of advanced equipment based on the future technological battlefield.展开更多
Artificial intelligence(AI)refers to the simulation of human intelligence in machines programmed to convert raw input data into decision-making actions,like humans.AI programs are designed to make decisions,often usin...Artificial intelligence(AI)refers to the simulation of human intelligence in machines programmed to convert raw input data into decision-making actions,like humans.AI programs are designed to make decisions,often using deep learning and computer-guided programs that analyze and process raw data into clinical decision making for effective treatment.New techniques for predicting cancer at an early stage are needed as conventional methods have poor accuracy and are not applicable to personalized medicine.AI has the potential to use smart,intelligent computer systems for image interpretation and early diagnosis of cancer.AI has been changing almost all the areas of the medical field by integrating with new emerging technologies.AI has revolutionized the entire health care system through innovative digital diagnostics with greater precision and accuracy.AI is capable of detecting cancer at an early stage with accurate diagnosis and improved survival outcomes.AI is an innovative technology of the future that can be used for early prediction,diagnosis and treatment of cancer.展开更多
The trend toward designing an intelligent distribution system based on students’individual differences and individual needs has taken precedence in view of the traditional dormitory distribution system,which neglects...The trend toward designing an intelligent distribution system based on students’individual differences and individual needs has taken precedence in view of the traditional dormitory distribution system,which neglects the students’personality traits,causes dormitory disputes,and affects the students’quality of life and academic quality.This paper collects freshmen's data according to college students’personal preferences,conducts a classification comparison,uses the decision tree classification algorithm based on the information gain principle as the core algorithm of dormitory allocation,determines the description rules of students’personal preferences and decision tree classification preferences,completes the conceptual design of the database of entity relations and data dictionaries,meets students’personality classification requirements for the dormitory,and lays the foundation for the intelligent dormitory allocation system.展开更多
The rich and colorful leather design brings a broad stage of fashion design in the past, China's leather (leather) clothing brand single, old style, color: black, blue, is brown. The economic and cultural developm...The rich and colorful leather design brings a broad stage of fashion design in the past, China's leather (leather) clothing brand single, old style, color: black, blue, is brown. The economic and cultural development, leading the fashion changes, the concept is also constantly promote the development of a new direction, to the consumer, aesthetic with the change of consumption concept, the fur (leather) apparel consumption presents a civilian, personalized, ideal trend, leather (leather) clothing to reflects personal charm and style of the clothing style, design aesthetic appreciation, knowledge and other aspects of the new technology and new materials to absorb human body art is to stimulate leather (leather) the change of clothing. With the continuous development of science and technology, intelligent garment customization to the majority of consumers, the effect of intelligent custom fur (leather) three direction costumes (fabrics, colors, styles) for innovative research, get a Of leather (leather) costumes to break the current leather (leather) styles of dull shape, rich leather (leather) and other clothing charm, for the fur (leather) costumes to all ages personality need to provide ideas and new development space.展开更多
Polarimetry encompasses a collection of optical techniques broadly used in a variety of fields.Nowadays,such techniques have provided their suitability in the biomedical field through the study of the polarimetric res...Polarimetry encompasses a collection of optical techniques broadly used in a variety of fields.Nowadays,such techniques have provided their suitability in the biomedical field through the study of the polarimetric response of biological samples(retardance,dichroism and depolarization)by measuring certain polarimetric observables.One of these features,depolarization,is mainly produced by scattering on samples,which is a predominant efiect in turbid media as biological tissues.In turn,retardance and dichroic efiects are produced by tissue anisotropies and can lead to depolarization too.Since depolarization is a predominant efiect in tissue samples,we focus on studying difierent depolarization metrics for biomedical applications.We report the suitability of a set of depolarizing observables,the indices of polarimetric purity(IPPs),for biological tissue inspection.We review some results where we demonstrate that IPPs lead to better performance than the depolarization index,which is a well-established and commonly used depolarization observable in the literature.We also provide how IPPs are able to significantly enhance contrast between difierent tissue structures and even to reveal structures hidden by using standard intensity images.Finally,we also explore the classificatory potential of IPPs and other depolarizing observables for the discrimination of difierent tissues obtained from ex vivo chicken samples(muscle,tendon,myotendinous junction and bone),reaching accurate models for tissue classification.展开更多
Background: This study explored nursing personality traits (Big Five Inventory BFI), emotional intelligence (EI), and thinking styles (Rational, RS, and Experiential, ES) together with demographic data to see how they...Background: This study explored nursing personality traits (Big Five Inventory BFI), emotional intelligence (EI), and thinking styles (Rational, RS, and Experiential, ES) together with demographic data to see how they could relate and the implication of this on nurses and patient safety. Design: A cross-sectional study. Methods: Nursing sample (n = 435). Participants completed a self-report online survey, which included demographic information, followed by questionnaires to measure personality traits, thinking styles, and emotional intelligence. Results: Spearman’s rank correlation was computed to assess the relationship between EI and Extraversion;there was a moderate positive correlation between the two variables, r = 0.487, p r = 0.731, p r = 0.723, p r = -0.666, p r = 0.467, p Conclusion: Different studies consolidated each other, and all converge and channel into the concept of characterization of healthcare providers for better support to them and safer patient care. EI correlated with all BFI components, and both positively impacted all desirable behaviors. Therefore, it would be valuable if organizations invested in increasing EI in their providers as it might highlight areas for improvement and equip providers with appropriate and advantageous coping strategies.展开更多
Oppositional Defiant Disorder(ODD)and Attention Deficit/Hyperactivity Disorder(ADHD)are mental health conditions that have traditionally been managed through behavioral therapies and medication.However,the integration...Oppositional Defiant Disorder(ODD)and Attention Deficit/Hyperactivity Disorder(ADHD)are mental health conditions that have traditionally been managed through behavioral therapies and medication.However,the integration of Artificial Intelligence(AI)has brought about a revolutionary shift in treatment approaches.This article explores the role of AI-driven noninvasive treatments for ODD and ADHD.AI offers personalized treatment plans,predictive analytics,virtual therapeutic platforms,and continuous monitoring,enhancing the effectiveness and accessibility of interventions.Ethical considerations and the need for a balanced approach are discussed.As technology evolves,collaborative efforts between mental health professionals and technologists will shape the future of mental health care for individuals with ODD and ADHD.展开更多
揭示技术演化脉络是把握技术发展规律的前提,基于专利信息的主题挖掘是基于技术发展微观机制呈现宏观规律的重要研究内容,对技术超前布局和创新驱动实践具有重大意义。技术主题动态演化分析DPL-BMM(Dirichlet process biterm-based mixt...揭示技术演化脉络是把握技术发展规律的前提,基于专利信息的主题挖掘是基于技术发展微观机制呈现宏观规律的重要研究内容,对技术超前布局和创新驱动实践具有重大意义。技术主题动态演化分析DPL-BMM(Dirichlet process biterm-based mixture model with labelling)是一种附有标签的基于双项狄利克雷过程的混合模型,其突破了传统主题模型在进行主题识别时需固定主题数目的局限,通过增加技术主题表示模块使识别到的技术主题内容更加明确。本文以人工智能领域技术为例进行实证分析,研究结果表明,该方法对技术主题及其演化脉络展示具有实际应用价值。展开更多
文摘Medical Internet of Things(IoT)devices are becoming more and more common in healthcare.This has created a huge need for advanced predictive health modeling strategies that can make good use of the growing amount of multimodal data to find potential health risks early and help individuals in a personalized way.Existing methods,while useful,have limitations in predictive accuracy,delay,personalization,and user interpretability,requiring a more comprehensive and efficient approach to harness modern medical IoT devices.MAIPFE is a multimodal approach integrating pre-emptive analysis,personalized feature selection,and explainable AI for real-time health monitoring and disease detection.By using AI for early disease detection,personalized health recommendations,and transparency,healthcare will be transformed.The Multimodal Approach Integrating Pre-emptive Analysis,Personalized Feature Selection,and Explainable AI(MAIPFE)framework,which combines Firefly Optimizer,Recurrent Neural Network(RNN),Fuzzy C Means(FCM),and Explainable AI,improves disease detection precision over existing methods.Comprehensive metrics show the model’s superiority in real-time health analysis.The proposed framework outperformed existing models by 8.3%in disease detection classification precision,8.5%in accuracy,5.5%in recall,2.9%in specificity,4.5%in AUC(Area Under the Curve),and 4.9%in delay reduction.Disease prediction precision increased by 4.5%,accuracy by 3.9%,recall by 2.5%,specificity by 3.5%,AUC by 1.9%,and delay levels decreased by 9.4%.MAIPFE can revolutionize healthcare with preemptive analysis,personalized health insights,and actionable recommendations.The research shows that this innovative approach improves patient outcomes and healthcare efficiency in the real world.
文摘Neuromuscular diseases present profound challenges to individuals and healthcare systems worldwide, profoundly impacting motor functions. This research provides a comprehensive exploration of how artificial intelligence (AI) technology is revolutionizing rehabilitation for individuals with neuromuscular disorders. Through an extensive review, this paper elucidates a wide array of AI-driven interventions spanning robotic-assisted therapy, virtual reality rehabilitation, and intricately tailored machine learning algorithms. The aim is to delve into the nuanced applications of AI, unlocking its transformative potential in optimizing personalized treatment plans for those grappling with the complexities of neuromuscular diseases. By examining the multifaceted intersection of AI and rehabilitation, this paper not only contributes to our understanding of cutting-edge advancements but also envisions a future where technological innovations play a pivotal role in alleviating the challenges posed by neuromuscular diseases. From employing neural-fuzzy adaptive controllers for precise trajectory tracking amidst uncertainties to utilizing machine learning algorithms for recognizing patient motor intentions and adapting training accordingly, this research encompasses a holistic approach towards harnessing AI for enhanced rehabilitation outcomes. By embracing the synergy between AI and rehabilitation, we pave the way for a future where individuals with neuromuscular disorders can access tailored, effective, and technologically-driven interventions to improve their quality of life and functional independence.
文摘Intelligent personal assistants play a pivotal role in in-vehicle systems,significantly enhancing life efficiency,driving safety,and decision-making support.In this study,the multi-modal design elements of intelligent personal assistants within the context of visual,auditory,and somatosensory interactions with drivers were discussed.Their impact on the driver’s psychological state through various modes such as visual imagery,voice interaction,and gesture interaction were explored.The study also introduced innovative designs for in-vehicle intelligent personal assistants,incorporating design principles such as driver-centricity,prioritizing passenger safety,and utilizing timely feedback as a criterion.Additionally,the study employed design methods like driver behavior research and driving situation analysis to enhance the emotional connection between drivers and their vehicles,ultimately improving driver satisfaction and trust.
基金Supported by the National Natural Science Foundation of China (62202346)Hubei Key Research and Development Program (2021BAA042)+3 种基金Open project of Engineering Research Center of Hubei Province for Clothing Information (2022HBCI01)Wuhan Applied Basic Frontier Research Project (2022013988065212)MIIT′s AI Industry Innovation Task Unveils Flagship Projects (Key Technologies,Equipment,and Systems for Flexible Customized and Intelligent Manufacturing in the Clothing Industry)Hubei Science and Technology Project of Safe Production Special Fund (Scene Control Platform Based on Proprioception Information Computing of Artificial Intelligence)。
文摘Background Intelligent garments,a burgeoning class of wearable devices,have extensive applications in domains such as sports training and medical rehabilitation.Nonetheless,existing research in the smart wearables domain predominantly emphasizes sensor functionality and quantity,often skipping crucial aspects related to user experience and interaction.Methods To address this gap,this study introduces a novel real-time 3D interactive system based on intelligent garments.The system utilizes lightweight sensor modules to collect human motion data and introduces a dual-stream fusion network based on pulsed neural units to classify and recognize human movements,thereby achieving real-time interaction between users and sensors.Additionally,the system incorporates 3D human visualization functionality,which visualizes sensor data and recognizes human actions as 3D models in real time,providing accurate and comprehensive visual feedback to help users better understand and analyze the details and features of human motion.This system has significant potential for applications in motion detection,medical monitoring,virtual reality,and other fields.The accurate classification of human actions contributes to the development of personalized training plans and injury prevention strategies.Conclusions This study has substantial implications in the domains of intelligent garments,human motion monitoring,and digital twin visualization.The advancement of this system is expected to propel the progress of wearable technology and foster a deeper comprehension of human motion.
文摘The recent increase in the use of artificial intelligence has led to fundamental changes in the development of training and teaching methods for executive education. However, the success of artificial intelligence in regional centers for teaching and training professions will depend on the acceptance of this technology by young executive trainees. This article discusses the potential benefits of adopting AI in executive training institutions in Morocco, specifically focusing on CRMEF Casablanca Settat. Based on the Unified Theory of Acceptance and Use of Technology (UTAUT) (Venkatesh et al., 2003), this study proposes a model to identify the factors influencing the acceptance of artificial intelligence in regional centers for teaching professions and training in Morocco. To achieve this, a structural equation modeling approach was used to quantitatively describe the impact of each factor on AI adoption, utilizing data collected from 173 young executive trainees. The results indicate that perceived ease of use, perceived usefulness, trainer influence, and personal innovativeness influence the intention to use artificial intelligence. Our research provides managers of CRMEFs with a set of practical recommendations to enhance the implementation conditions of an artificial intelligence system. It aims to understand which factors should be considered in designing an artificial intelligence system within regional centers for teaching professions and training (CRMEFs).
文摘Artificial Intelligence (AI) expands its recognition rapidly through the past few years in the context of generating content dynamically, remarkably challenging the human creativity. This study aims to evaluate the efficacy of AI in enhancing personal branding for musicians, particularly in crafting brand images based on emotions received from the artist’s music will improve the audience perceptions regarding the artist’s brand. Study used a quantitative approach for the research, gathering primary data from the survey of 191 people—music lovers, musicians and music producers. The survey focuses on preferences, perceptions, and behaviours related to music consumption and artist branding. The study results demonstrate the awareness and understanding of AI’s role in personal branding within the music industry. Also, results indicate that such an adaptive approach enhances audience perceptions of the artist and strengthens emotional connections. Furthermore, over 50% of the participants indicated a desire to attend live events where an artist’s brand image adapts dynamically to their emotions. The study focuses on novel approaches in personal branding based on the interaction of AI-driven emotional data. In contrast to traditional branding concepts, this study indicates that AI can suggest dynamic and emotionally resonant brand identities for artists. The real time audience response gives proper guidance for the decision-making. This study enriches the knowledge of AI’s applicability to branding processes in the context of the music industry and opens the possibilities for additional advancements in building emotionally appealing brand identities.
基金supported by the National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(Projects No.52202012)the National Natural Science Foundation of China(Projects No.51834007)。
文摘With the development of ordnance technology,the survival and safety of individual combatants in hightech warfare are under serious threat,and the Personal Protective Equipment(PPE),as an important guarantee to reduce casualties and maintain military combat effectiveness,is widely developed.This paper systematically reviewed various PPE based on individual combat through literature research and comprehensive discussion,and introduced in detail the latest application progress of PPE in terms of material and technology from three aspects:individual integrated protection system,traditional protection equipment,and intelligent protection equipment,respectively,and discussed in depth the functional improvement and optimization status brought by advanced technology for PPE,focusing on the achievements of individual equipment technology application.Finally,the problems and technical bottlenecks in the development of PPE were analyzed and summarized,and the development trend of PPE were pointed out.The results of the review will provide a forward-looking reference for the current development of individual PPE,and are important guidance for the design and technological innovation of advanced equipment based on the future technological battlefield.
文摘Artificial intelligence(AI)refers to the simulation of human intelligence in machines programmed to convert raw input data into decision-making actions,like humans.AI programs are designed to make decisions,often using deep learning and computer-guided programs that analyze and process raw data into clinical decision making for effective treatment.New techniques for predicting cancer at an early stage are needed as conventional methods have poor accuracy and are not applicable to personalized medicine.AI has the potential to use smart,intelligent computer systems for image interpretation and early diagnosis of cancer.AI has been changing almost all the areas of the medical field by integrating with new emerging technologies.AI has revolutionized the entire health care system through innovative digital diagnostics with greater precision and accuracy.AI is capable of detecting cancer at an early stage with accurate diagnosis and improved survival outcomes.AI is an innovative technology of the future that can be used for early prediction,diagnosis and treatment of cancer.
文摘The trend toward designing an intelligent distribution system based on students’individual differences and individual needs has taken precedence in view of the traditional dormitory distribution system,which neglects the students’personality traits,causes dormitory disputes,and affects the students’quality of life and academic quality.This paper collects freshmen's data according to college students’personal preferences,conducts a classification comparison,uses the decision tree classification algorithm based on the information gain principle as the core algorithm of dormitory allocation,determines the description rules of students’personal preferences and decision tree classification preferences,completes the conceptual design of the database of entity relations and data dictionaries,meets students’personality classification requirements for the dormitory,and lays the foundation for the intelligent dormitory allocation system.
文摘The rich and colorful leather design brings a broad stage of fashion design in the past, China's leather (leather) clothing brand single, old style, color: black, blue, is brown. The economic and cultural development, leading the fashion changes, the concept is also constantly promote the development of a new direction, to the consumer, aesthetic with the change of consumption concept, the fur (leather) apparel consumption presents a civilian, personalized, ideal trend, leather (leather) clothing to reflects personal charm and style of the clothing style, design aesthetic appreciation, knowledge and other aspects of the new technology and new materials to absorb human body art is to stimulate leather (leather) the change of clothing. With the continuous development of science and technology, intelligent garment customization to the majority of consumers, the effect of intelligent custom fur (leather) three direction costumes (fabrics, colors, styles) for innovative research, get a Of leather (leather) costumes to break the current leather (leather) styles of dull shape, rich leather (leather) and other clothing charm, for the fur (leather) costumes to all ages personality need to provide ideas and new development space.
基金the financial support of Spanish MINECO(PID2021-126509OB-C21,and Fondos FEDER)Catalan Government(2017-SGR-001500).
文摘Polarimetry encompasses a collection of optical techniques broadly used in a variety of fields.Nowadays,such techniques have provided their suitability in the biomedical field through the study of the polarimetric response of biological samples(retardance,dichroism and depolarization)by measuring certain polarimetric observables.One of these features,depolarization,is mainly produced by scattering on samples,which is a predominant efiect in turbid media as biological tissues.In turn,retardance and dichroic efiects are produced by tissue anisotropies and can lead to depolarization too.Since depolarization is a predominant efiect in tissue samples,we focus on studying difierent depolarization metrics for biomedical applications.We report the suitability of a set of depolarizing observables,the indices of polarimetric purity(IPPs),for biological tissue inspection.We review some results where we demonstrate that IPPs lead to better performance than the depolarization index,which is a well-established and commonly used depolarization observable in the literature.We also provide how IPPs are able to significantly enhance contrast between difierent tissue structures and even to reveal structures hidden by using standard intensity images.Finally,we also explore the classificatory potential of IPPs and other depolarizing observables for the discrimination of difierent tissues obtained from ex vivo chicken samples(muscle,tendon,myotendinous junction and bone),reaching accurate models for tissue classification.
文摘Background: This study explored nursing personality traits (Big Five Inventory BFI), emotional intelligence (EI), and thinking styles (Rational, RS, and Experiential, ES) together with demographic data to see how they could relate and the implication of this on nurses and patient safety. Design: A cross-sectional study. Methods: Nursing sample (n = 435). Participants completed a self-report online survey, which included demographic information, followed by questionnaires to measure personality traits, thinking styles, and emotional intelligence. Results: Spearman’s rank correlation was computed to assess the relationship between EI and Extraversion;there was a moderate positive correlation between the two variables, r = 0.487, p r = 0.731, p r = 0.723, p r = -0.666, p r = 0.467, p Conclusion: Different studies consolidated each other, and all converge and channel into the concept of characterization of healthcare providers for better support to them and safer patient care. EI correlated with all BFI components, and both positively impacted all desirable behaviors. Therefore, it would be valuable if organizations invested in increasing EI in their providers as it might highlight areas for improvement and equip providers with appropriate and advantageous coping strategies.
文摘Oppositional Defiant Disorder(ODD)and Attention Deficit/Hyperactivity Disorder(ADHD)are mental health conditions that have traditionally been managed through behavioral therapies and medication.However,the integration of Artificial Intelligence(AI)has brought about a revolutionary shift in treatment approaches.This article explores the role of AI-driven noninvasive treatments for ODD and ADHD.AI offers personalized treatment plans,predictive analytics,virtual therapeutic platforms,and continuous monitoring,enhancing the effectiveness and accessibility of interventions.Ethical considerations and the need for a balanced approach are discussed.As technology evolves,collaborative efforts between mental health professionals and technologists will shape the future of mental health care for individuals with ODD and ADHD.
文摘揭示技术演化脉络是把握技术发展规律的前提,基于专利信息的主题挖掘是基于技术发展微观机制呈现宏观规律的重要研究内容,对技术超前布局和创新驱动实践具有重大意义。技术主题动态演化分析DPL-BMM(Dirichlet process biterm-based mixture model with labelling)是一种附有标签的基于双项狄利克雷过程的混合模型,其突破了传统主题模型在进行主题识别时需固定主题数目的局限,通过增加技术主题表示模块使识别到的技术主题内容更加明确。本文以人工智能领域技术为例进行实证分析,研究结果表明,该方法对技术主题及其演化脉络展示具有实际应用价值。