期刊文献+
共找到1,119篇文章
< 1 2 56 >
每页显示 20 50 100
基于参数优化VMD和改进LSSVM的道岔故障诊断方法 被引量:1
1
作者 王彦快 孟佳东 +1 位作者 张玉 杨建刚 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第5期2072-2085,共14页
为了解决道岔设备智能故障诊断中特征指标难以提取以及模型训练时间较长的问题,以ZDJ9型转辙机带动的道岔设备为研究对象,以转辙机功率曲线为数据基础,提出一种基于参数优化变分模态分解(Variational Mode Decomposition,VMD)和改进最... 为了解决道岔设备智能故障诊断中特征指标难以提取以及模型训练时间较长的问题,以ZDJ9型转辙机带动的道岔设备为研究对象,以转辙机功率曲线为数据基础,提出一种基于参数优化变分模态分解(Variational Mode Decomposition,VMD)和改进最小二乘支持向量机(Least Squares Support Vector Machines,LSSVM)的道岔故障诊断方法。首先,采用鲸鱼优化算法(Whale Optimization Algorithm,WOA)优化VMD参数,得到模态(Intrinsic Mode Functions,IMF)分量个数和惩罚因子的最优参数组合。其次,计算IMF分量与功率曲线的相关系数,优选相关性较大的前3阶IMF分量,并计算功率谱熵、模糊熵及包络熵值,建立多特征融合样本数据库。最后,针对麻雀搜索算法(Sparrow Search Algorithm,SSA)易陷入局部最优的问题,通过改进Tent混沌映射初始化策略随机生成种群,正余弦算法(Sine Cosine Algorithm,SCA)更新追随者的位置,并采用改进SSA优化LSSVM算法的惩罚因子和核函数方差,构建基于TSSSA-LSSVM的道岔故障诊断模型。实验结果表明:所提道岔故障诊断方法是可行的,采用多特征融合能够更加全面地提取道岔典型故障特征,反映道岔的真实运行状态,提高了故障诊断准确率,而且较TSSSA-SVM,PSO-LSSVM,GWO-LSSVM以及SSA-LSSVM等方法具有较高的故障诊断准确率、召回率以及较低的漏报率,减少了模型训练时间,完全满足现场道岔故障导向安全的原则,具有更好的故障诊断性能,对现场道岔设备的故障维修具有一定的指导意义。 展开更多
关键词 道岔 故障诊断 改进LSSVM 参数优化vmd 多特征融合
下载PDF
基于VMD-SE的电力负荷分量的多特征短期预测 被引量:1
2
作者 邵必林 纪丹阳 《中国电力》 CSCD 北大核心 2024年第4期162-170,共9页
为提高电力负荷的预测精度,提出一种基于VMD-SE的电力负荷分量的多特征短期预测方法。首先采用变分模态分解(VMD)将原始负荷分解为一系列模态分量与残差,VMD的分解层数由样本熵值(sample entropy,SE)确定;然后对比原始负荷与模态分量的S... 为提高电力负荷的预测精度,提出一种基于VMD-SE的电力负荷分量的多特征短期预测方法。首先采用变分模态分解(VMD)将原始负荷分解为一系列模态分量与残差,VMD的分解层数由样本熵值(sample entropy,SE)确定;然后对比原始负荷与模态分量的SE值,重构为平稳分量和波动分量,来降低运算规模;同时利用皮尔逊相关系数来筛选特征变量,删除特征冗余,建立灰狼算法优化后的支持向量回归模型(GWO-SVR)和长短期记忆神经网络(LSTM)分别对平稳分量和波动分量预测;最后以某地区2018—2020年用电负荷为例进行实验。实验证明:此模型精准度高达94.7%,平均绝对百分误差降低到2.98%,具有更好的精准性和适用性。 展开更多
关键词 短期预测 vmd 样本熵 波动分量 平稳分量 GWO-SVR 长短期记忆神经网络
下载PDF
融合BiLSTM和VMD的GNSS坐标时间序列重构
3
作者 何玉红 姚笛 +2 位作者 刘净利 孙志丽 娄艳华 《濮阳职业技术学院学报》 2024年第3期22-25,51,共5页
GNSS观测时间序列包含复杂的非线性构造运动,如地面质量荷载、模型残差、周围环境因素等。由于环境因素的复杂性,季节性信号可能具备准周期时变的特征,传统的时间序列分析模型很难模型化。因此,可以采用一种双向长短期记忆(Bidirectiona... GNSS观测时间序列包含复杂的非线性构造运动,如地面质量荷载、模型残差、周围环境因素等。由于环境因素的复杂性,季节性信号可能具备准周期时变的特征,传统的时间序列分析模型很难模型化。因此,可以采用一种双向长短期记忆(Bidirectional Long Short-Term Memory,BiLSTM)循环神经网络与变分模态分解(Variational Mode Decomposition,VMD)联合的信号重构方法。首先利用VMD强大的分解能力将GNSS信号进行频域剖分并将其分为多项子信号和噪声项,再基于BiLSTM强大的学习能力对GNSS信号进行训练建模。结果表明,BiLSTM+VMD模型能充分挖掘信号的时频域特征,提高信号重构的精度和稳定性,GNSS N、E、U三分量重构结果均方根误差(Root Mean Squared Error,RMSE)都表现出不同程度的降低,尤其水平方向效果更为显著,相比EMD与VMD方法,E方向离散度分别降低了61%和19%,N方向离散度分别降低了20%和14%。这为GNSS观测时间序列中信号提取与模型参数估计提供了一个有价值的模型。 展开更多
关键词 GNSS BiLSTM vmd分解 模型重构 信号提取
下载PDF
VMD可视化及深度学习的滚动轴承故障诊断
4
作者 魏航信 程欢 +1 位作者 吴伟 王晓荣 《机械设计与制造》 北大核心 2024年第7期210-214,220,共6页
滚动轴承故障检测信号具有非线性、不平稳的特点,且特征量难以提取,因此提出变分模态分解(VMD)信号的可视化与深度学习神经网络相结合的方法以诊断轴承故障。首先对轴承原始振动信号进行VMD分解,滤除信号噪声;其次采用希尔伯特黄变换消... 滚动轴承故障检测信号具有非线性、不平稳的特点,且特征量难以提取,因此提出变分模态分解(VMD)信号的可视化与深度学习神经网络相结合的方法以诊断轴承故障。首先对轴承原始振动信号进行VMD分解,滤除信号噪声;其次采用希尔伯特黄变换消除VMD存在的“欠包络”问题;接着对一维时间序列信号进行可视化变换,提取信号的格莱姆角视场(GAF)二维特征图,以充分反映不同故障的特征。最后采用卷积神经网络(CNN)对可视化图形进行诊断,CNN网络包括两个卷积层和两个池化层,卷积层的内核均为(5×5),池化层内核均为(2×2),卷积层深度分别为20和32。对采集的10类轴承振动信号进行诊断,训练集样本数量为3791,训练精度为96.5%,测试集样本数量为209,测试精度为95.2%,证明了本方法的有效性。 展开更多
关键词 深度学习 vmd 格莱姆角视场 故障诊断 滚动轴承
下载PDF
基于VMD-GA-BiLSTM的月降水量预测方法
5
作者 于霞 宋杰 +2 位作者 段勇 彭曦霆 李冰洁 《沈阳大学学报(自然科学版)》 CAS 2024年第4期297-305,共9页
利用辽宁省气象局提供的地面观测降水资料,构建了具有多元时间特征的降水数据,采用变分模态分解方法(variational mode decomposition,VMD)组合遗传算法(genetic algorithm,GA)对双向长短时记忆神经网络(bidirectional long short-term ... 利用辽宁省气象局提供的地面观测降水资料,构建了具有多元时间特征的降水数据,采用变分模态分解方法(variational mode decomposition,VMD)组合遗传算法(genetic algorithm,GA)对双向长短时记忆神经网络(bidirectional long short-term memory,BiLSTM)进行优化,建立基于VMD-GA-BiLSTM的月降水量预测模型,并与BiLSTM、VMD-BiLSTM和GA-BiLSTM进行实验对比,应用均方根误差(root mean square error,RMSE)、平均绝对误差(mean absolute error,MAE)和R 2决定系数作为模型评价指标。实验结果表明:VMD-GA-BiLSTM模型的R 2决定系数达到0.98,RMSE和MAE表现更低,验证了VMD-GA-BiLSTM模型在时间序列预测方面的优势。 展开更多
关键词 BiLSTM vmd 遗传算法 月降水量 时序特征
下载PDF
基于NGO-VMD和改进GoogLeNet的齿轮箱故障诊断方法
6
作者 李俊卿 刘若尧 何玉灵 《机床与液压》 北大核心 2024年第12期193-201,共9页
目前的齿轮箱故障诊断方法,在多转速工况及噪声干扰下,存在过拟合及诊断效果不佳的问题。针对此问题,提出一种北方苍鹰(NGO)算法优化变分模态分解(VMD)结合改进GoogLeNet的齿轮箱故障诊断方法。使用NGO对VMD进行参数寻优,利用优化后的VM... 目前的齿轮箱故障诊断方法,在多转速工况及噪声干扰下,存在过拟合及诊断效果不佳的问题。针对此问题,提出一种北方苍鹰(NGO)算法优化变分模态分解(VMD)结合改进GoogLeNet的齿轮箱故障诊断方法。使用NGO对VMD进行参数寻优,利用优化后的VMD去除故障信号中的噪声;对原始GoogLeNet的结构进行合理删减,并利用延迟丢弃法、可训练的ReLU函数(TReLU)对其改进;最后,将去噪后的故障信号转换为二维图作为改进GoogLeNet的输入数据进行网络的训练及分类,得到故障诊断结果。实验结果表明:与其他降噪方法相比,NGO-VMD方法的降噪效果明显,能显著提高故障诊断的准确率;与常见的卷积神经网络相比,提出的改进GoogLeNet能进一步提高故障诊断的准确率,达到了97.2%。 展开更多
关键词 变分模态分解(vmd) 北方苍鹰优化(NGO)算法 改进GoogLeNet 齿轮箱故障诊断
下载PDF
基于VMD-HHT的井下预裂爆破振动效应分析
7
作者 李祥龙 余林 +2 位作者 黄原明 陈浩 赵艳伟 《黄金科学技术》 CSCD 北大核心 2024年第3期501-510,共10页
云南玉溪大红山铜矿现有采矿方法为分段空场嗣后充填法,采用大爆破工艺,由于一次爆破的药量过大导致对保留岩体的损伤较大,影响采场的稳定性。为解决此问题,按照多打孔少装药的原则,在距保留岩体一定距离处布置一排较为密集的炮孔,并减... 云南玉溪大红山铜矿现有采矿方法为分段空场嗣后充填法,采用大爆破工艺,由于一次爆破的药量过大导致对保留岩体的损伤较大,影响采场的稳定性。为解决此问题,按照多打孔少装药的原则,在距保留岩体一定距离处布置一排较为密集的炮孔,并减小单孔装药量,在主爆区起爆之前先起爆该排炮孔,形成一条具有一定宽度的缝隙,以减弱对保留岩体的损伤。基于变分模态分解和希尔伯特黄变换(VMDHHT)方法对现场实测的爆破振动信号进行分析。结果表明:本次预裂爆破振动信号的瞬时能量分布区间主要集中在0~0.5 s内,频率分布的区间主要集中在40 Hz以内;采用3个测点的合速度进行减振率计算,得到3个测点减振率分别为21.0%、30.1%和38.5%,有效减小了爆破振动对保留岩体的损伤和破坏。 展开更多
关键词 预裂爆破 爆破振动 vmd-HHT 减振率 能量分布 大红山铜矿
下载PDF
基于GA-VMD分解与支持向量机的刀具故障诊断研究
8
作者 赵德宏 李永利 《沈阳建筑大学学报(自然科学版)》 CAS 北大核心 2024年第2期361-371,共11页
目的 研究非平稳性振动信号的分解方法,提出一种基于遗传算法优化后的变分模态分解方法(GA-VMD),提高刀具故障识别准确率。方法 以样本熵为目标函数值,利用遗传算法对样本熵进行迭代计算,得到变分模态分解的最佳分解层数k和惩罚系数α;... 目的 研究非平稳性振动信号的分解方法,提出一种基于遗传算法优化后的变分模态分解方法(GA-VMD),提高刀具故障识别准确率。方法 以样本熵为目标函数值,利用遗传算法对样本熵进行迭代计算,得到变分模态分解的最佳分解层数k和惩罚系数α;在此基础上,对刀具振动信号进行分解,并提取刀具故障特征,再利用近邻成分分析(NCA)对故障特征进行筛选,得到与刀具故障状态相关性较强的特征;最后将筛选后的故障特征输入到PSO-SVM分类模型中进行刀具故障诊断。结果 相较于PSO-VMD分解方法,在相同迭代次数下,GA-VMD分解方法对于刀具故障分类的准确率由92%提升至97%。结论 优化后的VMD分解方法降噪效果明显,能提取较好的刀具故障特征,刀具故障识别准确率有了明显提高,为信号分解层数以及刀具故障诊断提供了理论基础。 展开更多
关键词 vmd 特征提取 支持向量机 故障诊断
下载PDF
基于优化VMD-SSA-LSTM算法的锂离子电池RUL预测
9
作者 朱宗玖 顾发慧 《安徽理工大学学报(自然科学版)》 CAS 2024年第2期11-19,共9页
目的为了避免锂电池在使用的过程中可能会出现容量虚假回升现象,从而导致电池在超出退化标准后继续使用造成风险。方法提出基于鲸鱼优化算法(WOA)、分模态分解(VMD)、麻雀搜索算法(SSA)和长短时记忆神经网络(LSTM)的组合预测算法对锂离... 目的为了避免锂电池在使用的过程中可能会出现容量虚假回升现象,从而导致电池在超出退化标准后继续使用造成风险。方法提出基于鲸鱼优化算法(WOA)、分模态分解(VMD)、麻雀搜索算法(SSA)和长短时记忆神经网络(LSTM)的组合预测算法对锂离子电池剩余寿命(RUL)进行预测。首先对于变分模态分解模态数K和惩罚因子a以往需要凭经验确定的问题,提出使用WOA对VMD的两个参数进行寻优。其次将原始容量退化数据根据上一步确定的参数进行模态分解,得到有限个模态分量。由于经过分解过后得到的残差分量的起伏性较大,因此将其作为其中的一个分量。最后,使用SSA优化LSTM的超参数,并对得到的模态分量和残差分量进行预测,并将预测的各个分量重构得到预测结果。结果采用NASA PCoE实验室公开的锂电池失效数据集进行实验,验证了所提出的WOA-VMD-SSA-LSTM优化算法相较于其他2种优化算法,在平均绝对误差(MAE)、均方根误差(RMSE)和平均相对百分误差(MAPE)3项评价标准中都是最低,且MAPE小于1%。结论该优化算法对于锂电池RUL预测具有不错的精度和稳定性,为锂电池RUL预测提供了一种新的预测模型的同时,也为VMD超参数的选择和确定提供了一种新方法。 展开更多
关键词 RUL预测 vmd 锂离子电池 LSTM SSA
下载PDF
基于VMD-Stacking集成学习的新能源发电功率预测模型
10
作者 慈铁军 廖子恒 +2 位作者 任梦晨 梁音 吴自高 《电力科学与工程》 2024年第9期14-23,共10页
在“双碳”背景下,新能源发电功率的准确预测对于电力系统的平稳运行至关重要。提出了一种自适应性的VMD-Stacking集成模型,以解决数据集变化时传统学习模型预测精度不高的问题。利用皮尔逊相关系数选择与发电功率强相关的气象特征,通... 在“双碳”背景下,新能源发电功率的准确预测对于电力系统的平稳运行至关重要。提出了一种自适应性的VMD-Stacking集成模型,以解决数据集变化时传统学习模型预测精度不高的问题。利用皮尔逊相关系数选择与发电功率强相关的气象特征,通过变分模态分解(Variational mode decomposition,VMD)将功率数据分解为多个模态分量,由此构成新的数据集。运用贝叶斯优化算法调整超参数,综合评判随机森林等8种学习模型的评价指标,自适应选出预测性能最优的3种模型作为基学习器,并选用稳定性和泛化能力相对较强的线性回归(Linear Regression)作为元学习器,建立Stacking融合模型。对各分量的预测值叠加,得到最终预测结果。以某新能源场站为例,对风、光电站的发电功率进行预测。算例验证结果表明,该模型在面对不同数据集时,体现出较强的适应性,预测性能也得到显著的提升。 展开更多
关键词 新能源功率预测 Stacking集成学习 vmd 皮尔逊相关系数 贝叶斯超参数优化
下载PDF
基于VMD-TCN的水电机组健康状态监测系统设计 被引量:1
11
作者 钟旭 张宝源 +2 位作者 孟威 常峰德 高志国 《水利水电快报》 2024年第2期44-47,共4页
针对常规的水电机组运行监测系统以高频振动信号监测为主,低频振动信号监测失误问题较多,影响水电机组正常运行的问题,设计了基于VMD-TCN的水电机组健康状态监测系统。硬件方面,设计了AC102加速度传感器;软件方面,采集水电机组健康状态... 针对常规的水电机组运行监测系统以高频振动信号监测为主,低频振动信号监测失误问题较多,影响水电机组正常运行的问题,设计了基于VMD-TCN的水电机组健康状态监测系统。硬件方面,设计了AC102加速度传感器;软件方面,采集水电机组健康状态数据,对水电机组状态信号进行处理,判断机组健康状态。基于VMD-TCN分解水电机组健康状态监测信号,根据采集到的状态信号进行信号频段子模态分解,确保监测精准度。系统测试结果表明:该设计提升了系统的监测效果,系统性能良好。 展开更多
关键词 vmd-TCN 水电机组 健康状态 监测系统
下载PDF
基于优化VMD-GRU的滚动轴承剩余使用寿命预测
12
作者 郗涛 王锴 王莉静 《中国工程机械学报》 北大核心 2024年第1期101-106,共6页
为了提高滚动轴承剩余使用寿命(RUL)的预测精度,提出了一种变分模态分解(VMD)和门控循环神经网络(GRU)融合算法的滚动轴承RUL预测模型VMD-GRU。首先,该模型通过阿基米德优化算法(AOA)优化的VMD算法对原始振动信号进行分解;然后,利用最... 为了提高滚动轴承剩余使用寿命(RUL)的预测精度,提出了一种变分模态分解(VMD)和门控循环神经网络(GRU)融合算法的滚动轴承RUL预测模型VMD-GRU。首先,该模型通过阿基米德优化算法(AOA)优化的VMD算法对原始振动信号进行分解;然后,利用最小包络熵准则选择最佳模态分量进行退化特征提取;再通过核主成分分析进行特征降维;最后,为保证模型准确率,通过鹈鹕优化算法(POA)优化GRU中的超参数,并根据不同故障类型建立GRU剩余寿命预测模型。使用XJTU-SY标准数据集进行剩余寿命预测验证,实验结果表明:与传统未结合故障类型提取退化特征和建立预测模型方法相比,VMD-GRU模型均方根误差和平均绝对误差分别降低了26.28%和27.17%。 展开更多
关键词 滚动轴承 剩余寿命预测 变分模态分解(vmd) 门控循环神经网络(GRU) 阿基米德优化算法(AOA) 鹈鹕优化算法(POA)
下载PDF
基于ISSA-VMD的地铁构架应力谱门槛值自适应确定方法
13
作者 薛海 叶层林 +1 位作者 和永峰 陈江涛 《中国铁道科学》 EI CAS CSCD 北大核心 2024年第4期180-188,共9页
针对地铁构架应力谱编制过程中小应力循环舍弃缺乏标准可依的问题,提出基于改进麻雀搜索算法(ISSA)和应力-时间历程信号变分模态分解(VMD)的应力谱门槛值自适应确定方法。首先,通过融合Tent混沌映射、鱼鹰优化算法和柯西变异策略改进麻... 针对地铁构架应力谱编制过程中小应力循环舍弃缺乏标准可依的问题,提出基于改进麻雀搜索算法(ISSA)和应力-时间历程信号变分模态分解(VMD)的应力谱门槛值自适应确定方法。首先,通过融合Tent混沌映射、鱼鹰优化算法和柯西变异策略改进麻雀搜索算法,从而避免陷入局部最优,提高分析效率;其次,采用ISSA优化VMD的分解个数和惩罚因子,实现关键参数确定;最后,根据最优参数组合,对应力信号进行VMD分解,并结合疲劳损伤占比、均方根和均方误差等参数对分解得到不同分量信号的中心频率进行综合分析,提取损伤占比较大的信号频率作为截止频率,从频域层面实现小应力门槛值的确定。结果表明:采用此方法确定的小应力门槛值使得应力雨流循环总数降低17.1%,实际损伤较传统方法所得结果减少7.8%,在有效反映应力所造成疲劳效应的同时保留了应力循环特性,提高了应力谱编制效率,从而为地铁构架应力谱编制过程中小应力门槛值的合理确定提供了参考。 展开更多
关键词 地铁构架 应力谱 小应力门槛值 疲劳损伤 ISSA-vmd
下载PDF
基于加强灰狼优化VMD-DBN的变压器故障检测 被引量:1
14
作者 赵一钧 石雷 +3 位作者 齐笑 郝成钢 祝晓宏 王昕 《电测与仪表》 北大核心 2024年第2期157-163,共7页
针对当前在线识别变压器运行状态困难、低效的问题,通过提取箱壁的振动信号,提出了基于加强灰狼优化变分模态分解(Variational Mode Decomposition,VMD)深度置信网络(Deep Belief Network,DBN)的检测方法。首先,利用加强灰狼算法以能量... 针对当前在线识别变压器运行状态困难、低效的问题,通过提取箱壁的振动信号,提出了基于加强灰狼优化变分模态分解(Variational Mode Decomposition,VMD)深度置信网络(Deep Belief Network,DBN)的检测方法。首先,利用加强灰狼算法以能量误差为适应度函数,优化VMD的重要参数(分解层数k和惩罚因子α),然后分解计算各本征模态分量(Intrinsic Mode Functions,IMF)的能量标值,组成特征数据集,用来表征变压器运行工况。最后使用深度置信网络对特征数据集进行反复学习训练,形成故障诊断模型对变压器状态进行识别。通过实验对比分析VMD能更好地提取信号中有效的特征,提高识别的精准度,同时DBN相较于其他两种经典识别算法,抽象能力更好,学习的能力更强,稳定性更高,能准确识别变压器正常、绕组辐向形变、绕组轴向形变、铁芯故障四种状态。加强灰狼优化VMD-DBN的状态识别率达到了97.45%,均值误差为0.37,相比于其他方法效果最佳。因此,所提方法具有一定的实用价值。 展开更多
关键词 变压器 振动信号 加强灰狼 vmd 深度置信网络
下载PDF
基于DTW K-medoids与VMD-多分支神经网络的多用户短期负荷预测 被引量:2
15
作者 王宇飞 杜桐 +3 位作者 边伟国 张钊 刘慧婷 杨丽君 《中国电力》 CSCD 北大核心 2024年第6期121-130,共10页
多用户电力负荷预测是指根据历史负荷数据对多个用户或区域的电力负荷进行预测,可使电网企业掌握不同用户或区域的电力需求,以便更好地开展规划和实施调度优化等。然而由于各用户呈现出复杂多样的用电行为,采用传统方法难以进行统一建... 多用户电力负荷预测是指根据历史负荷数据对多个用户或区域的电力负荷进行预测,可使电网企业掌握不同用户或区域的电力需求,以便更好地开展规划和实施调度优化等。然而由于各用户呈现出复杂多样的用电行为,采用传统方法难以进行统一建模并实现快速准确预测。为此,构建了一种基于DTW Kmedoids与VMD-多分支神经网络的多用户短期负荷预测模型。首先,采用DTW K-medoids法进行用户负荷数据聚类,利用动态时间弯曲(dynamic time warping,DTW)计算数据间的距离,取代K-medoids算法中传统的欧氏距离度量方式,以改善多用户负荷聚类的效果;在此基础上,为充分表征负荷历史数据的长短期时序依赖特征,建立了一种基于变分模态分解(variational mode decomposition,VMD)-多分支神经网络模型的并行预测方法,用于多用户短期负荷预测;最后,使用某地区20个用户365天的负荷数据进行聚类、训练和测试实验,结果显示该模型结果的平均绝对误差和均方根误差等指标均较对比模型有较大幅度降低,表明该方法可有效表征多类用户的用电行为,提升多用户负荷预测效率和精度。 展开更多
关键词 多用户 负荷预测 DTW K-medoids聚类 变分模态分解(vmd) 多分支神经网络
下载PDF
基于优化VMD-CNN-BiLSTM的电机轴承智能故障诊断研究 被引量:1
16
作者 曹景胜 于洋 +1 位作者 王琦 董翼宁 《现代电子技术》 北大核心 2024年第12期115-121,共7页
针对滚动轴承早期故障信号较弱及特征数据提取效果差,导致故障诊断准确率低以及故障诊断效率低的问题,提出一种信号处理结合深度神经网络的故障诊断方法。首先,采用变分模态分解(VMD)法提取主轴承振动数据中的特征数据;然后为了确定VMD... 针对滚动轴承早期故障信号较弱及特征数据提取效果差,导致故障诊断准确率低以及故障诊断效率低的问题,提出一种信号处理结合深度神经网络的故障诊断方法。首先,采用变分模态分解(VMD)法提取主轴承振动数据中的特征数据;然后为了确定VMD算法中最佳的模态分量个数K及惩罚参数α,增强特征提取的效果,将最小排列熵作为适应度函数,采用全局优化能力强的正弦混沌自适应鲸鱼优化算法(CAWOA)进行参数的确定,得到最优模态分量;接着,根据最优模态分量构造特征向量,将特征向量作为CNN-BiLSTM网络的输入,实现故障的分类。最后,根据实验平台采集的数据进行实验分析。结果表明,优化VMD-CNN-BiLSTM轴承故障诊断模型相较于其他故障诊断模型,在准确率以及实时性上均有明显提升。 展开更多
关键词 变分模态分解(vmd) 卷积神经网络(CNN) 双向长短期记忆(BiLSTM) 滚动轴承 智能故障诊断 特征数据提取 正弦混沌自适应鲸鱼优化算法
下载PDF
基于PSO-VMD和EWT的异步电机滑动轴承故障诊断
17
作者 彭川 吝伶艳 +3 位作者 雷志鹏 田慕琴 侯茜茜 宋建成 《噪声与振动控制》 CSCD 北大核心 2024年第5期140-147,209,共9页
针对大型电机滑动轴承故障诊断困难的问题,提出基于频域积分、变分模态分解(Variational Mode Decomposition,VMD)和经验小波分解(Empirical Wavelet Transform,EWT)相结合的滑动轴承故障诊断方法。以实际故障电机轴承加速度信号为例,... 针对大型电机滑动轴承故障诊断困难的问题,提出基于频域积分、变分模态分解(Variational Mode Decomposition,VMD)和经验小波分解(Empirical Wavelet Transform,EWT)相结合的滑动轴承故障诊断方法。以实际故障电机轴承加速度信号为例,首先通过频域积分得到位移信号,分析位移信号的时域和频域特征可初步诊断出电机可能存在碰摩故障和不对中故障,但轴心轨迹图混乱,无法给出肯定结论;然后将经粒子群算法(Particle Swarm Optimization,PSO)优化的变分模态分解和小波阈值去噪相结合对原始位移信号进行去噪,通过经验小波变换得到位移信号的主要频率成分并进行重构,重新绘制轴心轨迹,分析表明经提纯得到的轴心轨迹清晰、特征明显,可以由此判断出电机存在碰摩-轴承不对中耦合故障。最后将该方法与聚类经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)等方法对比可以得出,采用该方法可以得到更清晰的轴心轨迹图,有助于实现电机滑动轴承的故障诊断。 展开更多
关键词 故障诊断 滑动轴承 频域积分 变分模态分解(vmd) 经验小波分解(EWT) 轴心轨迹
下载PDF
基于数据预处理和计算机VMD-LSTM-GPR的储能系统离子电池剩余寿命预测 被引量:1
18
作者 田凌浒 袁炳夏 《储能科学与技术》 CSCD 北大核心 2024年第1期336-338,共3页
离子电池剩余寿命影响储能系统运行能力,准确预测电池寿命,有助于判断系统的实时运行状态,为获得较为可靠的预测结果,提出基于数据预处理和计算机VMD-LSTM-GPR的储能系统离子电池剩余寿命预测方法。针对储能系统离子电池剩余寿命预测的... 离子电池剩余寿命影响储能系统运行能力,准确预测电池寿命,有助于判断系统的实时运行状态,为获得较为可靠的预测结果,提出基于数据预处理和计算机VMD-LSTM-GPR的储能系统离子电池剩余寿命预测方法。针对储能系统离子电池剩余寿命预测的相关理论问题进行研究,并联合储能数据预处理标准与计算机VMDLSTM-GPR模型,计算锂离子电池的容量退化能力,从而评估剩余电池寿命,实现基于数据预处理和计算机VMD-LSTM-GPR的储能系统离子电池剩余寿命预测。 展开更多
关键词 数据预处理 计算机vmd-LSTM-GPR 储能系统 离子电池 剩余寿命
下载PDF
基于改进VMD和GRU的水轮发电机组振动故障预警
19
作者 皮有春 谭鋆 +3 位作者 郭钰静 黄正海 肖燕凤 陈言 《中国农村水利水电》 北大核心 2024年第3期244-249,共6页
针对水轮发电机组受水、机、电等因素相互耦合,早期故障特征被电磁和噪声所淹没难以提取的问题,设计了一种基于改进VMD和GRU的水轮发电机组振动故障预警方法。首先,采用BES算法对变分模态VMD的参数进行寻优,得到最佳的分解层数、惩罚因... 针对水轮发电机组受水、机、电等因素相互耦合,早期故障特征被电磁和噪声所淹没难以提取的问题,设计了一种基于改进VMD和GRU的水轮发电机组振动故障预警方法。首先,采用BES算法对变分模态VMD的参数进行寻优,得到最佳的分解层数、惩罚因子和模态个数,然后采用最优的VMD算法对水轮发电机组早期的振动特征进行提取,最后将早期的振动特征输入GRU神经网络预测算法进行训练、验证和测试。仿真结果和工程实例表明,该方法可以有效快速准确提取水轮发电机组的早期微弱振动特征,实现水轮发电机组的早期故障预警,具有较高的工程应用价值。 展开更多
关键词 水轮发电机组 BES vmd GRU 振动故障
下载PDF
基于VMD-WOA混合多尺度分解的区间组合预测模型
20
作者 康晓晓 陈华友 +1 位作者 韩冰 胡彦 《武汉理工大学学报(信息与管理工程版)》 CAS 2024年第3期460-466,共7页
针对传统的点预测模型难以适用于随机性复杂系统和非线性非平稳时间序列预测的问题,提出基于VMD-WOA混合多尺度分解的区间组合预测模型。首先,引入基于鲸鱼优化(WOA)的变分模态分解(VMD)混合分解算法,得到最优区间模态子序列;其次,对各... 针对传统的点预测模型难以适用于随机性复杂系统和非线性非平稳时间序列预测的问题,提出基于VMD-WOA混合多尺度分解的区间组合预测模型。首先,引入基于鲸鱼优化(WOA)的变分模态分解(VMD)混合分解算法,得到最优区间模态子序列;其次,对各区间模态分序列使用指数平滑方法(Holt′s)、支持向量回归(SVR)和BP神经网络预测,得到3个单项预测结果,运用组合预测模型得到模态组合子序列;最后,对模态组合子序列重构,得到最终的区间组合预测序列。为了验证模型的有效性,选取AQI数据进行预测分析,实验表明所提出的基于VMD-WOA的区间组合预测方法具有较高的预测精度和良好的适应性。 展开更多
关键词 混合多尺度分解 变分模态分解(vmd) 鲸鱼优化(WOA) 区间组合预测 空气质量指数
下载PDF
上一页 1 2 56 下一页 到第
使用帮助 返回顶部