The development of pores in a clastic reservoir is one of the most important research subjects in oil-gas exploration and development, whereas the many reasons for the formation of secondary porosity have increased th...The development of pores in a clastic reservoir is one of the most important research subjects in oil-gas exploration and development, whereas the many reasons for the formation of secondary porosity have increased the degree of difficulty in such research. Thus the research aims are to discover the controlling factors of solutional voids in feldspars and to predict favorable regions for these voids. Macroscopic and systematic researches into the relationship between the kaolinite content in the feldspar solutional void developed area of the Chang 2 reservoir group of the Triassic Yanchang Formation in the Midwest Ordos Basin and the solutional void in feldspar have been made, and from this it can be determined that the kaolinite content has an indicative function to the distribution of the solutional void in feldspar. Solutional void in feldspar is relatively well developed at the area where kaolinite content is high. Although the factors affecting kaolinite content are complicated, yet that of the research area is mainly affected by the impact of the leaching atmospheric water acting on the palaeogeomorphology. Three favorable zone belts for the development of solutional voids in feldspars are forecasted on the basis of restoration of palaeogeomorphology.展开更多
Beginning from the premise that the universe is static, and that the cosmological redshift is due to a nonconservative tired light effect, the following examines evidence supporting the prediction that photons will pr...Beginning from the premise that the universe is static, and that the cosmological redshift is due to a nonconservative tired light effect, the following examines evidence supporting the prediction that photons will progressively blueshift when transiting through the gravity wells of galaxies, galaxy clusters, and superclusters. The presence of such a nonvelocity blueshift effect is seen to make a substantial contribution to Virgo cluster galaxy spectra, sufficient to dramatically decrease the cluster’s velocity dispersion and assessed virial mass and eliminate the need to assume the presence of large quantities of dark matter. The effect is also shown to account for the Fingers-of-God effect and Kaiser pancaking effect seen when the spectra of cluster galaxies are plotted in redshift space. The opposite effect, excessive redshifting of photons passing through cosmic voids is able to explain void elongation in redshift space, and also the subnormal luminosity of void galaxies. The proposed cosmological blueshifting phenomenon also explains the downturn of the slope of the Hubble Flow in the vicinity of the Local Group which projects a negative apparent velocity for photons propagating near the Milky Way. It also offers an explanation for the blueshift of the Andromeda galaxy spectra and for Arp’s findings that the spectra of primary galaxies in a cluster tend to be blueshifted relative to their companion galaxies. These photon energy phenomena are anticipated by the physics of subquantum kinetics which predicts that photons traversing long distances through intergalactic space should undergo nonconservative tired-light redshifting, and that photons passing through gravity potential wells should undergo progressive blueshifting. The latter effect may be visualized as a negative nonvelocity Hubble constant.展开更多
文摘The development of pores in a clastic reservoir is one of the most important research subjects in oil-gas exploration and development, whereas the many reasons for the formation of secondary porosity have increased the degree of difficulty in such research. Thus the research aims are to discover the controlling factors of solutional voids in feldspars and to predict favorable regions for these voids. Macroscopic and systematic researches into the relationship between the kaolinite content in the feldspar solutional void developed area of the Chang 2 reservoir group of the Triassic Yanchang Formation in the Midwest Ordos Basin and the solutional void in feldspar have been made, and from this it can be determined that the kaolinite content has an indicative function to the distribution of the solutional void in feldspar. Solutional void in feldspar is relatively well developed at the area where kaolinite content is high. Although the factors affecting kaolinite content are complicated, yet that of the research area is mainly affected by the impact of the leaching atmospheric water acting on the palaeogeomorphology. Three favorable zone belts for the development of solutional voids in feldspars are forecasted on the basis of restoration of palaeogeomorphology.
文摘Beginning from the premise that the universe is static, and that the cosmological redshift is due to a nonconservative tired light effect, the following examines evidence supporting the prediction that photons will progressively blueshift when transiting through the gravity wells of galaxies, galaxy clusters, and superclusters. The presence of such a nonvelocity blueshift effect is seen to make a substantial contribution to Virgo cluster galaxy spectra, sufficient to dramatically decrease the cluster’s velocity dispersion and assessed virial mass and eliminate the need to assume the presence of large quantities of dark matter. The effect is also shown to account for the Fingers-of-God effect and Kaiser pancaking effect seen when the spectra of cluster galaxies are plotted in redshift space. The opposite effect, excessive redshifting of photons passing through cosmic voids is able to explain void elongation in redshift space, and also the subnormal luminosity of void galaxies. The proposed cosmological blueshifting phenomenon also explains the downturn of the slope of the Hubble Flow in the vicinity of the Local Group which projects a negative apparent velocity for photons propagating near the Milky Way. It also offers an explanation for the blueshift of the Andromeda galaxy spectra and for Arp’s findings that the spectra of primary galaxies in a cluster tend to be blueshifted relative to their companion galaxies. These photon energy phenomena are anticipated by the physics of subquantum kinetics which predicts that photons traversing long distances through intergalactic space should undergo nonconservative tired-light redshifting, and that photons passing through gravity potential wells should undergo progressive blueshifting. The latter effect may be visualized as a negative nonvelocity Hubble constant.