Recently, researchers in the road field are focusing on the development of green asphalt materials with loweremission of volatile organic compounds (VOCs). The characterization methodology of asphalt VOCs and theinflu...Recently, researchers in the road field are focusing on the development of green asphalt materials with loweremission of volatile organic compounds (VOCs). The characterization methodology of asphalt VOCs and theinfluencing factors on VOCs release have always been the basic issue of asphalt VOCs emission reduction research.Researchers have proposed a variety of asphalt VOCs characterization methodologies, which also have mutuallyirreplaceable characteristics. Asphalt VOCs volatilization is affected by many factors. In this study, asphalt VOCscharacterization methodologies were summarized, including their advantages, disadvantages, characteristics andapplicable requirements. Subsequently, the influencing factors of VOCs release, such as asphalt types and environment conditions, are summarized to provide theoretical support for the emission reduction research. Theclassification and mechanism of newly-development asphalt VOCs emission reduction materials are reviewed. Thereduction efficiencies are also compared to select better materials and put forward the improvement objective ofnew materials and new processes. In addition, the prospects about development of VOCs release mechanism ofasphalt materials during the full life cycle and feasibility research of high-efficiency composite emission reductionmaterials in the future were put forward.展开更多
This paper presents a comprehensive overview of various advanced technologies employed in the treatment of volatile organic compounds(VOCs),which are crucial pollutants in industrial emissions.The study explores diffe...This paper presents a comprehensive overview of various advanced technologies employed in the treatment of volatile organic compounds(VOCs),which are crucial pollutants in industrial emissions.The study explores different methods,including direct combustion,thermal combustion,catalytic combustion,low-temperature plasma purification,photocatalytic purification,membrane separation,and adsorption methods.Each technology is critically analyzed for its operational principles,efficiency,and applicability under different conditions.Special attention is given to adsorption concentration and catalytic combustion parallel method,highlighting its efficiency in treating low-concentration,high-volume VOC emissions.The paper also delves into the advantages and limitations of each method,providing insights into their effectiveness in various industrial scenarios.The study aims to offer a detailed guide for selecting appropriate VOC treatment technologies,contributing to enhanced environmental protection and sustainable industrial practices.展开更多
In the fall of 2016, a field study was conducted in the Uinta Basin Utah to improve information on oil and natural gas well pad pneumatic controllers (PCs) and emission measurement methods. A total of 80 PC systems at...In the fall of 2016, a field study was conducted in the Uinta Basin Utah to improve information on oil and natural gas well pad pneumatic controllers (PCs) and emission measurement methods. A total of 80 PC systems at five oil sites (supporting six wells) and three gas sites (supporting 12 wells) were surveyed, and emissions data were produced using a combination of measurements and engineering emission estimates. Ninety-six percent of the PCs surveyed were low actuation frequency intermittent vent type. The overall whole gas emission rate for the study was estimated at 0.36 scf/h with the majority of emissions occurring from three continuous vent PCs (1.1 scf/h average) and eleven (14%) malfunctioning intermittent vent PC systems (1.6 scf/h average). Oil sites employed, on average 10.3 PC systems per well compared to 1.5 for gas sites. Oil and gas sites had group average PC emission rates of 0.28 scf/h and 0.67 scf/h, respectively. This difference was due in part to differing site selection procedures used for oil and gas sites. The PC system types encountered, the engineering emissions estimate approach, and comparisons to measurements are described. Survey methods included identification of malfunctioning PC systems and emission measurements with augmented high volume sampling and installed mass flow meters, each providing a somewhat different representation of emissions that are elucidated through example cases.展开更多
In the fall of 2016, a field study was conducted in the Uinta Basin Utah to improve information on oil and natural gas well pad pneumatic controllers (PCs) and emission measurement methods. A total of 80 PC systems at...In the fall of 2016, a field study was conducted in the Uinta Basin Utah to improve information on oil and natural gas well pad pneumatic controllers (PCs) and emission measurement methods. A total of 80 PC systems at five oil sites (supporting six wells) and three gas sites (supporting 12 wells) were surveyed, and emissions data were produced using a combination of measurements and engineering emission estimates. Ninety-six percent of the PCs surveyed were low actuation frequency intermittent vent type. The overall whole gas emission rate for the study was estimated at 0.36 scf/h with the majority of emissions occurring from three continuous vent PCs (1.1 scf/h average) and eleven (14%) malfunctioning intermittent vent PC systems (1.6 scf/h average). Oil sites employed, on average 10.3 PC systems per well compared to 1.5 for gas sites. Oil and gas sites had group average PC emission rates of 0.28 scf/h and 0.67 scf/h, respectively. This difference was due in part to differing site selection procedures used for oil and gas sites. The PC system types encountered, the engineering emissions estimate approach, and comparisons to measurements are described. Survey methods included identification of malfunctioning PC systems and emission measurements with augmented high volume sampling and installed mass flow meters, each providing a somewhat different representation of emissions that are elucidated through example cases.展开更多
The regulated pollutants (CO,HC and NOx) and unregulated pollutants (volatile organic compounds and carbonyl compounds),emitted from a dual fuel vehicle fueled with gasoline and E10 fuel,are measured under a trans...The regulated pollutants (CO,HC and NOx) and unregulated pollutants (volatile organic compounds and carbonyl compounds),emitted from a dual fuel vehicle fueled with gasoline and E10 fuel,are measured under a transient cycle and steady modes.The impacts of a three-way catalyst (TWC) are investigated for the two types of fuels.The measured results show that NOx and acetaldehyde emitted from the E10-fueled car are much more than that from the gasoline-fueled car under the same modes.On the basis of maximum incremental reactivity (MIR) factors and emissions of organic gases,the ozone specific reactivity of the tailpipe gases are evaluated.展开更多
A laboratory study was conducted to investigate volatile organic compound(VOC) emissions from agricultural soil amended with wheat straw and their associations with bacterial communities for a period of 66 days unde...A laboratory study was conducted to investigate volatile organic compound(VOC) emissions from agricultural soil amended with wheat straw and their associations with bacterial communities for a period of 66 days under non-flooded and flooded conditions. The results indicated that ethene, propene, ethanol, i-propanol, 2-butanol, acetaldehyde, acetone,2-butanone, 2-pentanone and acetophenone were the 10 most abundant VOCs, making up over 90% of the total VOCs released under the two water conditions. The mean emission of total VOCs from the amended soils under the non-flooded condition(5924 ng C/(kg·hr)) was significantly higher than that under the flooded condition(2211 ng C/(kg·hr)). One "peak emission window" appeared at days 0–44 or 4–44, and over 95% of the VOC emissions occurred during the first month under the two water conditions. Bacterial community analysis using denaturing gradient gel electrophoresis(DGGE) showed that a relative increase of Actinobacteria, Bacteroidetes, Firmicutes and γ-Proteobacteria but a relative decrease of Acidobacteria with time were observed after straw amendments under the two water conditions. Cluster analysis revealed that the soil bacterial communities changed greatly with incubation time, which was in line with the variation of the VOC emissions over the experimental period. Most of the above top 10 VOCs correlated positively with the predominant bacterial species of Bacteroidetes, Firmicutes and Verrucomicrobia but correlated negatively with the dominant bacterial species of Actinobacteria under the two water conditions. These results suggested that bacterial communities might play an important role in VOC emissions from straw-amended agricultural soils.展开更多
A study was conducted to explore the mechanism that emissions of volatile organic compounds(VOC) from heated needles and twigs(200°C,within 15 min) of Pinus pumila affect fire behaviours using the technology ...A study was conducted to explore the mechanism that emissions of volatile organic compounds(VOC) from heated needles and twigs(200°C,within 15 min) of Pinus pumila affect fire behaviours using the technology of Thermal Desorption-Gas Chromatography-Mass Spectrometry(TD-GC-MS).The results indicated that the main components of VOC from heated needles and twigs are terpenoids.Most of these terpenoids are monoterpenes.Terpenoids account for 72.93% for the needles and 92.40% for the twigs of the total VOC,and their emission ratios are 61.200 μg·g-1 and 217.060 μg·g-1 respectively.Heated twigs can emit more terpenoids than heated needles because twigs had more volatile oils than needles.In actual fires,these large amounts of terpenoid emissions,especially the monoterpene emissions,have strong effects on fire behaviors that are not only in the initial stage but also in the fast propagation stage of fires.These flammable gases are capable of causing violent combustion and creating crown fires.In addition,if these gases accumulate in an uneven geographical area,there will be a possible for eruptive fires and/or fires flashover to occur.展开更多
Emissions of volatile organic compounds (VOCs) and carbonyls from residential coal combustion of five coals with different maturities were studied in a simulated room.The coals were burned in form of honeycomb briqu...Emissions of volatile organic compounds (VOCs) and carbonyls from residential coal combustion of five coals with different maturities were studied in a simulated room.The coals were burned in form of honeycomb briquettes in a domestic coal stove,one of the most common fuel/stove combinations in China.Through a dilution system,VOCs and carbonyls samples were collected by canisters and silica-gel cartridges and analyzed by gas chromatography and mass spectrum (GC/MS) and high performance liquid chromatography/ultraviolet (HPLC/UV),respectively.The results show that the bituminous coals with medium volatile matter content produce the highest emissions while the anthracite yields the lowest.Among the identified carbonyls from the coal smoke,the aromatic compounds (benzaldehyde,2,5-dimethylbenzaldehyde and p-tolualdehyde,m/o-tolualdehyde,benzene,m,p-xylene and trimethyl-benzene) were relatively abundant,which might be due to the molecular structure of the coal.For formaldehyde,aromatic carbonyls and aliphatic alkanes,their concentrations increase up to the maximum values and then decrease with increasing coal maturity.The total carbonyls and VOCs have the same tendency,which was observed for the emission factors of organic carbon (OC),elemental carbon (EC),particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) detected in the series study.展开更多
The volatile organic compounds (VOC) emitted from indoor decorating and refurbishing materials and furniture is recognized as one of the main causes of bad indoor air quality,which has resulted in serious economic los...The volatile organic compounds (VOC) emitted from indoor decorating and refurbishing materials and furniture is recognized as one of the main causes of bad indoor air quality,which has resulted in serious economic losses.In European countries and the U.S.,labeling systems for indoor decorating and refurbishing materials and furniture were established to address this issue with good effect.This paper is a review of these existing labeling systems.The basic principle of the labeling systems is introduced.The technical,policy and operational parts of the labeling systems are then discussed.The research concentrates on target pollutants,their threshold values and the testing methods employed.Some problems were uncovered in these labeling systems:too many VOCs were targeted;the method to determine the threshold values was not very rigorous;the testing time was too long (7-28 d).Some China's special features in developing such system are stated.Therefore,as the world's largest national producer and consumer of wood based panels and furniture,China should learn from foreign experience of establishing labeling systems as much as it can.However China should not simply copy the foreign approaches but develop its own scientific labeling system for indoor decorating and refurbishing materials and furniture.展开更多
Biogenic isoprene emissions have been believed to be from only photosynthesis processes in plant. However nocturnal isoprene emission from pine is detected. And by feeding 13CO2 to plants, it is found that both photos...Biogenic isoprene emissions have been believed to be from only photosynthesis processes in plant. However nocturnal isoprene emission from pine is detected. And by feeding 13CO2 to plants, it is found that both photosynthesis pathway and light independent processes contribute to isoprene emissions.展开更多
Abstract: The biogenic volatile organic compounds (VOC) emitted by the vegetation of a terrestrial ecosystem play a key role in both regional air quality and tropospheric chemistry. To describe the general emission pr...Abstract: The biogenic volatile organic compounds (VOC) emitted by the vegetation of a terrestrial ecosystem play a key role in both regional air quality and tropospheric chemistry. To describe the general emission properties of VOC of different plant functional groups (PFG) in a typical temperate grassland in Inner Mongolia, China, we randomly selected 175 plant species and measured the quantities of isoprene and monoterpene in situ. Results showed that most plants had low VOC emission potential at the species level, especially for some dominant plants, such as Leymus chinensis Tzvel., Stipa grandis Smirn., and Agropyron cristatum Gaertn. At the PFG level, the lowest VOC emission potential was found for perennial rhizome grasses, a major PFG in a typical temperate grassland ecosystem. The effects of overgrazing and subsequent vegetation succession on the emission of VOC by different plant life form functional groups (PLFG) were also discussed.展开更多
Cooking process can produce abundant volatile organic compounds(VOCs),which are harmful to environment and human health.Therefore,we conducted a comprehensive analysis in which VOCs emissions from multiple cuisines ha...Cooking process can produce abundant volatile organic compounds(VOCs),which are harmful to environment and human health.Therefore,we conducted a comprehensive analysis in which VOCs emissions from multiple cuisines have been sampled based on the simulation and acquisition platform,involving concentration characteristics,ozone formation potential(OFP)and purification efficiency assessments.VOCs emissions varied from 1828.5 to 14,355.1μg/m^(3),with the maximumand minimumvalues fromBarbecue and Family cuisine,respectively.Alkanes and alcohol had higher contributions to VOCs from Sichuan and Hunan cuisine(64.1%),Family cuisine(66.3%),Shandong cuisine(69.1%)and Cantonese cuisine(69.8%),with the dominant VOCs species of ethanol,isobutane and n-butane.In comparison,alcohols(79.5%)were abundant for Huaiyang cuisine,while alkanes(19.7%),alkenes(35.9%)and haloalkanes(22.9%)accounted for higher proportions from Barbecue.Specially,carbon tetrachloride,n-hexylene and 1-butene were the most abundant VOCs species for Barbecue,ranging from 8.8%to 14.6%.The highest OFP occurred in Barbecue.The sensitive species of OFP for Huaiyang cuisine were alcohols,while other cuisines were alkenes.Purification efficiency assessments shed light on the removal differences of individual and synergistic control technologies.VOCs emissions exhibited a strong dependence on the photocatalytic oxidation,with the removal efficiencies of 29.0%–54.4%.However,the high voltage electrostatic,wet purification and mechanical separation techniques played a mediocre or even counterproductive role in the VOCs reduction,meanwhile collaborative control technologies could not significantly improve the removal efficiency.Our results identifiedmore effective control technologies,which were conductive to alleviating air pollution from cooking emissions.展开更多
基金the National Natural Science Foundation of China(52378460 and 51878526)the Program Fund of Non-metallic Excellent and Innovation Center for Building Materials(Grants 2024TDA-3)Knowledge Innovation Program of Wuhan-Basic Research from the Wuhan Science and Technology Bureau(2022020801010176)are gratefully acknowledged.
文摘Recently, researchers in the road field are focusing on the development of green asphalt materials with loweremission of volatile organic compounds (VOCs). The characterization methodology of asphalt VOCs and theinfluencing factors on VOCs release have always been the basic issue of asphalt VOCs emission reduction research.Researchers have proposed a variety of asphalt VOCs characterization methodologies, which also have mutuallyirreplaceable characteristics. Asphalt VOCs volatilization is affected by many factors. In this study, asphalt VOCscharacterization methodologies were summarized, including their advantages, disadvantages, characteristics andapplicable requirements. Subsequently, the influencing factors of VOCs release, such as asphalt types and environment conditions, are summarized to provide theoretical support for the emission reduction research. Theclassification and mechanism of newly-development asphalt VOCs emission reduction materials are reviewed. Thereduction efficiencies are also compared to select better materials and put forward the improvement objective ofnew materials and new processes. In addition, the prospects about development of VOCs release mechanism ofasphalt materials during the full life cycle and feasibility research of high-efficiency composite emission reductionmaterials in the future were put forward.
文摘This paper presents a comprehensive overview of various advanced technologies employed in the treatment of volatile organic compounds(VOCs),which are crucial pollutants in industrial emissions.The study explores different methods,including direct combustion,thermal combustion,catalytic combustion,low-temperature plasma purification,photocatalytic purification,membrane separation,and adsorption methods.Each technology is critically analyzed for its operational principles,efficiency,and applicability under different conditions.Special attention is given to adsorption concentration and catalytic combustion parallel method,highlighting its efficiency in treating low-concentration,high-volume VOC emissions.The paper also delves into the advantages and limitations of each method,providing insights into their effectiveness in various industrial scenarios.The study aims to offer a detailed guide for selecting appropriate VOC treatment technologies,contributing to enhanced environmental protection and sustainable industrial practices.
文摘In the fall of 2016, a field study was conducted in the Uinta Basin Utah to improve information on oil and natural gas well pad pneumatic controllers (PCs) and emission measurement methods. A total of 80 PC systems at five oil sites (supporting six wells) and three gas sites (supporting 12 wells) were surveyed, and emissions data were produced using a combination of measurements and engineering emission estimates. Ninety-six percent of the PCs surveyed were low actuation frequency intermittent vent type. The overall whole gas emission rate for the study was estimated at 0.36 scf/h with the majority of emissions occurring from three continuous vent PCs (1.1 scf/h average) and eleven (14%) malfunctioning intermittent vent PC systems (1.6 scf/h average). Oil sites employed, on average 10.3 PC systems per well compared to 1.5 for gas sites. Oil and gas sites had group average PC emission rates of 0.28 scf/h and 0.67 scf/h, respectively. This difference was due in part to differing site selection procedures used for oil and gas sites. The PC system types encountered, the engineering emissions estimate approach, and comparisons to measurements are described. Survey methods included identification of malfunctioning PC systems and emission measurements with augmented high volume sampling and installed mass flow meters, each providing a somewhat different representation of emissions that are elucidated through example cases.
文摘In the fall of 2016, a field study was conducted in the Uinta Basin Utah to improve information on oil and natural gas well pad pneumatic controllers (PCs) and emission measurement methods. A total of 80 PC systems at five oil sites (supporting six wells) and three gas sites (supporting 12 wells) were surveyed, and emissions data were produced using a combination of measurements and engineering emission estimates. Ninety-six percent of the PCs surveyed were low actuation frequency intermittent vent type. The overall whole gas emission rate for the study was estimated at 0.36 scf/h with the majority of emissions occurring from three continuous vent PCs (1.1 scf/h average) and eleven (14%) malfunctioning intermittent vent PC systems (1.6 scf/h average). Oil sites employed, on average 10.3 PC systems per well compared to 1.5 for gas sites. Oil and gas sites had group average PC emission rates of 0.28 scf/h and 0.67 scf/h, respectively. This difference was due in part to differing site selection procedures used for oil and gas sites. The PC system types encountered, the engineering emissions estimate approach, and comparisons to measurements are described. Survey methods included identification of malfunctioning PC systems and emission measurements with augmented high volume sampling and installed mass flow meters, each providing a somewhat different representation of emissions that are elucidated through example cases.
基金Sponsored by the National Natural Science Foundation of China (40805053)
文摘The regulated pollutants (CO,HC and NOx) and unregulated pollutants (volatile organic compounds and carbonyl compounds),emitted from a dual fuel vehicle fueled with gasoline and E10 fuel,are measured under a transient cycle and steady modes.The impacts of a three-way catalyst (TWC) are investigated for the two types of fuels.The measured results show that NOx and acetaldehyde emitted from the E10-fueled car are much more than that from the gasoline-fueled car under the same modes.On the basis of maximum incremental reactivity (MIR) factors and emissions of organic gases,the ozone specific reactivity of the tailpipe gases are evaluated.
基金financially supported by the Natural Science Foundation of China(Nos.41025012,41103067,41571130031 and 41273095)
文摘A laboratory study was conducted to investigate volatile organic compound(VOC) emissions from agricultural soil amended with wheat straw and their associations with bacterial communities for a period of 66 days under non-flooded and flooded conditions. The results indicated that ethene, propene, ethanol, i-propanol, 2-butanol, acetaldehyde, acetone,2-butanone, 2-pentanone and acetophenone were the 10 most abundant VOCs, making up over 90% of the total VOCs released under the two water conditions. The mean emission of total VOCs from the amended soils under the non-flooded condition(5924 ng C/(kg·hr)) was significantly higher than that under the flooded condition(2211 ng C/(kg·hr)). One "peak emission window" appeared at days 0–44 or 4–44, and over 95% of the VOC emissions occurred during the first month under the two water conditions. Bacterial community analysis using denaturing gradient gel electrophoresis(DGGE) showed that a relative increase of Actinobacteria, Bacteroidetes, Firmicutes and γ-Proteobacteria but a relative decrease of Acidobacteria with time were observed after straw amendments under the two water conditions. Cluster analysis revealed that the soil bacterial communities changed greatly with incubation time, which was in line with the variation of the VOC emissions over the experimental period. Most of the above top 10 VOCs correlated positively with the predominant bacterial species of Bacteroidetes, Firmicutes and Verrucomicrobia but correlated negatively with the dominant bacterial species of Actinobacteria under the two water conditions. These results suggested that bacterial communities might play an important role in VOC emissions from straw-amended agricultural soils.
基金supported by National Natural Science Foundation of China (30872037, 31070587)Open Project Program of State Key Laboratory of Fire Science, University of Science and Technology of China (HZ2008-KF08)
文摘A study was conducted to explore the mechanism that emissions of volatile organic compounds(VOC) from heated needles and twigs(200°C,within 15 min) of Pinus pumila affect fire behaviours using the technology of Thermal Desorption-Gas Chromatography-Mass Spectrometry(TD-GC-MS).The results indicated that the main components of VOC from heated needles and twigs are terpenoids.Most of these terpenoids are monoterpenes.Terpenoids account for 72.93% for the needles and 92.40% for the twigs of the total VOC,and their emission ratios are 61.200 μg·g-1 and 217.060 μg·g-1 respectively.Heated twigs can emit more terpenoids than heated needles because twigs had more volatile oils than needles.In actual fires,these large amounts of terpenoid emissions,especially the monoterpene emissions,have strong effects on fire behaviors that are not only in the initial stage but also in the fast propagation stage of fires.These flammable gases are capable of causing violent combustion and creating crown fires.In addition,if these gases accumulate in an uneven geographical area,there will be a possible for eruptive fires and/or fires flashover to occur.
基金supported by the National Natural Science Foundation of China (Grant Nos.40773047,40605033 and 40973071)the Shanghai Leading Academic Discipline Project (Grant No.S30109)the Earmarked Foundation of the State Key Laboratory of Organic Geochemistry (Grant No.OGL-200705)
文摘Emissions of volatile organic compounds (VOCs) and carbonyls from residential coal combustion of five coals with different maturities were studied in a simulated room.The coals were burned in form of honeycomb briquettes in a domestic coal stove,one of the most common fuel/stove combinations in China.Through a dilution system,VOCs and carbonyls samples were collected by canisters and silica-gel cartridges and analyzed by gas chromatography and mass spectrum (GC/MS) and high performance liquid chromatography/ultraviolet (HPLC/UV),respectively.The results show that the bituminous coals with medium volatile matter content produce the highest emissions while the anthracite yields the lowest.Among the identified carbonyls from the coal smoke,the aromatic compounds (benzaldehyde,2,5-dimethylbenzaldehyde and p-tolualdehyde,m/o-tolualdehyde,benzene,m,p-xylene and trimethyl-benzene) were relatively abundant,which might be due to the molecular structure of the coal.For formaldehyde,aromatic carbonyls and aliphatic alkanes,their concentrations increase up to the maximum values and then decrease with increasing coal maturity.The total carbonyls and VOCs have the same tendency,which was observed for the emission factors of organic carbon (OC),elemental carbon (EC),particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) detected in the series study.
基金supported by Beijing Municipal Science and Technology Commission Projects(D09050603750802)the Chinese National12th Five-year Science and Technology Support Plan Project(2012BAJ02B01)
文摘The volatile organic compounds (VOC) emitted from indoor decorating and refurbishing materials and furniture is recognized as one of the main causes of bad indoor air quality,which has resulted in serious economic losses.In European countries and the U.S.,labeling systems for indoor decorating and refurbishing materials and furniture were established to address this issue with good effect.This paper is a review of these existing labeling systems.The basic principle of the labeling systems is introduced.The technical,policy and operational parts of the labeling systems are then discussed.The research concentrates on target pollutants,their threshold values and the testing methods employed.Some problems were uncovered in these labeling systems:too many VOCs were targeted;the method to determine the threshold values was not very rigorous;the testing time was too long (7-28 d).Some China's special features in developing such system are stated.Therefore,as the world's largest national producer and consumer of wood based panels and furniture,China should learn from foreign experience of establishing labeling systems as much as it can.However China should not simply copy the foreign approaches but develop its own scientific labeling system for indoor decorating and refurbishing materials and furniture.
文摘Biogenic isoprene emissions have been believed to be from only photosynthesis processes in plant. However nocturnal isoprene emission from pine is detected. And by feeding 13CO2 to plants, it is found that both photosynthesis pathway and light independent processes contribute to isoprene emissions.
文摘Abstract: The biogenic volatile organic compounds (VOC) emitted by the vegetation of a terrestrial ecosystem play a key role in both regional air quality and tropospheric chemistry. To describe the general emission properties of VOC of different plant functional groups (PFG) in a typical temperate grassland in Inner Mongolia, China, we randomly selected 175 plant species and measured the quantities of isoprene and monoterpene in situ. Results showed that most plants had low VOC emission potential at the species level, especially for some dominant plants, such as Leymus chinensis Tzvel., Stipa grandis Smirn., and Agropyron cristatum Gaertn. At the PFG level, the lowest VOC emission potential was found for perennial rhizome grasses, a major PFG in a typical temperate grassland ecosystem. The effects of overgrazing and subsequent vegetation succession on the emission of VOC by different plant life form functional groups (PLFG) were also discussed.
基金supported by the Open Research Fund Program of State Environmental Protection Key Laboratory of Food Chain Pollution Control(No.FC2021YB03)the Research Foundation for Youth Scholars of Beijing Technology and Business University(No.QNJJ2021-32).
文摘Cooking process can produce abundant volatile organic compounds(VOCs),which are harmful to environment and human health.Therefore,we conducted a comprehensive analysis in which VOCs emissions from multiple cuisines have been sampled based on the simulation and acquisition platform,involving concentration characteristics,ozone formation potential(OFP)and purification efficiency assessments.VOCs emissions varied from 1828.5 to 14,355.1μg/m^(3),with the maximumand minimumvalues fromBarbecue and Family cuisine,respectively.Alkanes and alcohol had higher contributions to VOCs from Sichuan and Hunan cuisine(64.1%),Family cuisine(66.3%),Shandong cuisine(69.1%)and Cantonese cuisine(69.8%),with the dominant VOCs species of ethanol,isobutane and n-butane.In comparison,alcohols(79.5%)were abundant for Huaiyang cuisine,while alkanes(19.7%),alkenes(35.9%)and haloalkanes(22.9%)accounted for higher proportions from Barbecue.Specially,carbon tetrachloride,n-hexylene and 1-butene were the most abundant VOCs species for Barbecue,ranging from 8.8%to 14.6%.The highest OFP occurred in Barbecue.The sensitive species of OFP for Huaiyang cuisine were alcohols,while other cuisines were alkenes.Purification efficiency assessments shed light on the removal differences of individual and synergistic control technologies.VOCs emissions exhibited a strong dependence on the photocatalytic oxidation,with the removal efficiencies of 29.0%–54.4%.However,the high voltage electrostatic,wet purification and mechanical separation techniques played a mediocre or even counterproductive role in the VOCs reduction,meanwhile collaborative control technologies could not significantly improve the removal efficiency.Our results identifiedmore effective control technologies,which were conductive to alleviating air pollution from cooking emissions.