Tianjin is the third largest megacity and the fastest growth area in China,and consequently faces the problems of surface ozone and haze episodes.This study measures and characterizes volatile organic compounds (VOCs...Tianjin is the third largest megacity and the fastest growth area in China,and consequently faces the problems of surface ozone and haze episodes.This study measures and characterizes volatile organic compounds (VOCs),which are ozone precursors,to identify their possible sources and evaluate their contribution to ozone formation in urban and suburban Tianjin,China during the HaChi (Haze in China) summer campaign in 2009.A total of 107 species of ambient VOCs were detected,and the average concentrations of VOCs at urban and suburban sites were 92 and 174 ppbv,respectively.Of those,51 species of VOCs were extracted to analyze the possible VOC sources using positive matrix factorization.The identified sources of VOCs were significantly related to vehicular activities,which specifically contributed 60% to urban and 42% to suburban VOCs loadings in Tianjin.Industrial emission was the second most prominent source of ambient VOCs in both urban and suburban areas,although the contribution of industry in the suburban area (36%) was much higher than that at the urban area (16%).We conclude that controlling vehicle emissions should be a top priority for VOC reduction,and that fast industrialization and urbanization causes air pollution to be more complex due to the combined emission of VOCs from industry and daily life,especially in suburban areas.展开更多
Volatile organic compounds(VOCs) are a major component in air pollutants and pose great risks to both human health and environmental protection. Currently, VOC abatement in industrial applications is through the use...Volatile organic compounds(VOCs) are a major component in air pollutants and pose great risks to both human health and environmental protection. Currently, VOC abatement in industrial applications is through the use of activated carbons as adsorbents and oxide-supported metals as catalysts. Notably, activated carbons easily adsorb water, which strongly hinders the adsorption of VOCs; conventional oxides typically possess relatively low surface areas and random pores, which effectively influence the catalytic conversion of VOCs. Zeolites, in contrast with activated carbons and oxides, can be designed to have very uniform and controllable micropores, in addition to tailored wettability properties, which can favor the selective adsorption of VOCs. In particular, zeolites with selective adsorptive properties when combined with catalytically active metals result in zeolite-supported metals exhibiting significantly improved performance in the catalytic combustion of VOCs compared with conventional oxide-supported catalysts. In this review, recent developments on VOC abatement by adsorptive and catalytic techniques over zeolite-based materials have been briefly summarized.展开更多
The public health and ecological impacts of volatile organic compound(VOCs) pollution have become a serious problem in China,arousing increasing attention to emissions control.In this context,this paper analyses the e...The public health and ecological impacts of volatile organic compound(VOCs) pollution have become a serious problem in China,arousing increasing attention to emissions control.In this context,this paper analyses the effectiveness of VOC reduction policies,namely pollution charges and environmental taxes at the national and industrial sector levels.It uses a computable general equilibrium model,which connects macroeconomic variables with VOC emissions inventory,to simulate the effects of policy scenarios(with 2007 as the reference year).This paper shows that VOC emissions are reduced by 2.2% when a pollution charge equal to the average cost of engineering reduction methods-the traditional approach to regulation in China-is applied.In order to achieve a similar reduction,an 8.9% indirect tax would have to be imposed.It concludes that an environmental tax should be the preferred method of VOC regulation due to its smaller footprint on the macroeconomy.Other policies,such as subsidies,should be used as supplements.展开更多
The vertical observation of volatile organic compounds(VOCs)is an important means to clarify the mechanisms of ozone formation.To explore the vertical evolution of VOCs in summer,a field campaign using a tethered ball...The vertical observation of volatile organic compounds(VOCs)is an important means to clarify the mechanisms of ozone formation.To explore the vertical evolution of VOCs in summer,a field campaign using a tethered balloon during summer photochemical pollution was conducted in Shijiazhuang from 8 June to 3 July 2019.A total of 192 samples were collected,23 vertical profiles were obtained,and the concentrations of 87 VOCs were measured.The range of the total VOC concentration was 41-48 ppbv below 600 m.It then slightly increased above 600 m,and rose to 58±52 ppbv at 1000 m.The proportion of alkanes increased with height,while the proportions of alkenes,halohydrocarbons and acetylene decreased.The proportion of aromatics remained almost unchanged.A comparison with the results of a winter field campaign during 8-16 January 2019 showed that the concentrations of all VOCs in winter except for halohydrocarbons were more than twice those in summer.Alkanes accounted for the same proportion in winter and summer.Alkenes,aromatics,and acetylene accounted for higher proportions in winter,while halohydrocarbons accounted for a higher proportion in summer.There were five VOC sources in the vertical direction.The proportions of gasoline vehicular emissions+industrial sources and coal burning were higher in winter.The proportions of biogenic sources+long-range transport,solvent usage,and diesel vehicular emissions were higher in summer.From the surface to 1000 m,the proportion of gasoline vehicular emissions+industrial sources gradually increased.展开更多
Volatile organic compounds(VOCs)are important precursors of ozone and PM_(2.5).At present,VOCs have gradually become the focus of air pollution control after fine particles in China,and a series of documents,standards...Volatile organic compounds(VOCs)are important precursors of ozone and PM_(2.5).At present,VOCs have gradually become the focus of air pollution control after fine particles in China,and a series of documents,standards and planning on VOCs were issued from the state to each area.The analysis on source apportionment and control of VOCs have also become a hot spot in atmospheric environmental protection research of China at present stage.The research work on VOCs in ambient air is the basis and premise of scientific and effective prevention and control of VOCs pollution.In this paper,research progress on the monitoring of VOCs is introduced systemically,and main monitoring and evaluation methods of atmospheric VOCs are explored from monitoring analysis method,chemical reaction activity and health risk assessment.Moreover,concentration characteristics and source apportionment of VOCs in the regions at home and abroad that have carried out VOCs research work are compared and summarized.The research could provide reference for source apportionment of VOCs in other cities of China.展开更多
Surface coating facilities are major sources of volatile organic compounds (VOCs) in urban areas. These VOCs can contribute to ground-level ozone formation, and many are hazardous air pollutants (HAPs), including xyle...Surface coating facilities are major sources of volatile organic compounds (VOCs) in urban areas. These VOCs can contribute to ground-level ozone formation, and many are hazardous air pollutants (HAPs), including xylene, ethylbenzene, and toluene. This project was conducted in order to provide information for updating the Texas Commission on Environmental Quality (TCEQ), USA, permit by rule for Surface Coating Facilities. Project objectives were: 1) To develop a database of information regarding surface coating facilities in Texas;2) To estimate maximum emission rates for various VOC species from surface coating facilities in Texas;3) To conduct dispersion modeling to estimate off-site impacts from surface coating facilities. The database was developed using 286 TCEQ permit files authorizing surface coating facilities in Texas during 2006 and 2007. The database was designed to include information important for estimating emission rates, and for using as inputs to the dispersion model. Hourly and annual emissions of volatile organic compounds (VOCs), particulate matter (PM), and exempt solvents (ES) were calculated for each permitted entity/ company in the database, according to equations given by TCEQ. Dispersion modeling was then conducted for 3 facility configurations (worst-case stack height, good practice stack height, and fugitive emissions), for urban and rural dispersion parameters, for 8-hour and 24-hour operating scenarios, and for 1-hour, 24-hour, and annual averaging times, for a total of 36 scenarios. The highest modeled concentrations were for the worst-case stack height, rural dispersion parameters, 24-hour operation scenario, and 1-hour averaging time. 108 specific chemical species, which are components of surface coatings, were identified as candidates for further health impacts review.展开更多
A survey was conducted of the volatile organic compounds(VOCs)released from sources of solvent use,industry activities and vehicle emissions in Guiyang,a capital city of China.Samples were collected by canisters and a...A survey was conducted of the volatile organic compounds(VOCs)released from sources of solvent use,industry activities and vehicle emissions in Guiyang,a capital city of China.Samples were collected by canisters and analyzed by GC-MS-FID.The species profiles of VOCs emitted from sources were obtained.Results showed that xylenes,ethylbenzene,acetone and dichloromethane were the characteristics species for painting,2-propanol and ethyl acetate for printing,α-pinene for solid wood furniture manufacturing,and 2-butanone for biscuit baking.These characteristics species could be as tracers for the sources respectively.In most of samples from the solvent use,the benzene/toluene(B/T)ratio was less than 0.3,indicating that the ratio could be as the indicator for tracing the solvent use related sources.The results also suggested that the toluene/xylene(T/X)ratio be as the indicator to distinguish the VOCs sources of painting(<2)from the printing(>2).Aromatics contributed the most to ozone formation potential(OFP)of most painting and non-paper printing sources,and oxygen-containing VOCs(OVOCs)were major species contributing to OFP of the sources from food production and paper printing.The OFP of the VOCs emissions from vehicle in tunnels and from other manufactures were dominated by both aromatics and alkenes.Theα-pinene could explain 56.94%and 32.54%of total OFP of the VOCs sources from filing cabinet and solid wood furniture manufacturing,which was rarely been involved in previous studies of VOCs source profiles,indicating that the species of concern for VOCs sources are still insufficient at present.展开更多
Based on one-year observation,the concentration,sources,and potential source areas of volatile organic compounds(VOCs)were comprehensively analyzed to investigate the pollution characteristics of ambient VOCs in Haiko...Based on one-year observation,the concentration,sources,and potential source areas of volatile organic compounds(VOCs)were comprehensively analyzed to investigate the pollution characteristics of ambient VOCs in Haikou,China.The results showed that the annual average concentration of total VOCs(TVOCs)was 11.4 ppb V,and the composition was dominated by alkanes(8.2 ppb V,71.4%)and alkenes(1.3 ppb V,20.5%).The diurnal variation in the concentration of dominant VOC species showed a distinct bimodal distribution with peaks in the morning and evening.The greatest contribution to ozone formation potential(OFP)was made by alkenes(51.6%),followed by alkanes(27.2%).The concentrations of VOCs and nitrogen dioxide(NO_(2))in spring and summer were low,and it was difficult to generate high ozone(O_(3))concentrations through photochemical reactions.The significant increase in O_(3)concentrations in autumn and winter was mainly related to the transmission of pollutants from the northeast.Traffic sources(40.1%),industrial sources(19.4%),combustion sources(18.6%),solvent usage sources(15.5%)and plant sources(6.4%)were identified as major sources of VOCs through the positive matrix factorization(PMF)model.The southeastern coastal areas of China were identified as major potential source areas of VOCs through the potential source contribution function(PSCF)and concentration-weighted trajectory(CWT)models.Overall,the concentration of ambient VOCs in Haikou was strongly influenced by traffic sources and long-distance transport,and the control of VOCs emitted from vehicles should be strengthened to reduce the active species of ambient VOCs in Haikou,thereby reducing the generation of O_(3).展开更多
Air concentrations of volatile organic compounds(VOCs) were continually measured at a monitoring site in Shenyang from 20 August to 16 September 2017. The average concentrations of alkanes, alkenes, aromatics and carb...Air concentrations of volatile organic compounds(VOCs) were continually measured at a monitoring site in Shenyang from 20 August to 16 September 2017. The average concentrations of alkanes, alkenes, aromatics and carbonyls were 28.54, 6.30, 5.59 and9.78 ppbv, respectively. Seven sources were identified by the Positive Matrix Factorization model based on the measurement data of VOCs and CO. Vehicle exhaust contributed the most(36.15%) to the total propene-equivalent concentration of the measured VOCs,followed by combustion emission(16.92%), vegetation emission and secondary formation(14.33%), solvent usage(10.59%), petrochemical industry emission(9.89%), petrol evaporation(6.28%), and liquefied petroleum gas(LPG) usage(5.84%). Vehicle exhaust, solvent usage and combustion emission were found to be the top three VOC sources for O_3 formation potential, accounting for 34.52%, 16.55% and 11.94%, respectively. The diurnal variation of the total VOCs from each source could be well explained by their emission characteristics,e.g., the two peaks of VOC concentrations from LPG usage were in line with the cooking times for breakfast and lunch. Wind rose plots of the VOCs from each source could reveal the possible distribution of the sources around the monitoring site. The O_3 pollution episodes during the measurement period were found to be coincident with the elevation of VOCs, which was mainly due to the air parcel from the southeast direction where petrochemical industry emission was found to be dominant, suggesting that the petrochemical industry emission from the southeast was probably a significant cause of O_3 pollution in Shenyang.展开更多
Surface ozone(O_(3))has become a critical pollutant impeding air quality improvement in many Chinese megacities.Chengdu is a megacity located in Sichuan Basin in southwest China,where O_(3)pollution occurs frequently ...Surface ozone(O_(3))has become a critical pollutant impeding air quality improvement in many Chinese megacities.Chengdu is a megacity located in Sichuan Basin in southwest China,where O_(3)pollution occurs frequently in both spring and summer.In order to understand the elevated O_(3)during spring in Chengdu,we conducted sampling campaign at three sites during O_(3)pollution episodes in April.Volatile organic compounds(VOCs)compositions at each site were similar,and oxygenated VOCs(OVOCs)concentrations accounted for the highest proportion(35%-45%),followed by alkanes,alkens(including acetylene),halohydrocarbons,and aromatics.The sensitivity of O_(3)to its precursors was analyzed using an observation based box model.The relative incremental reactivity of OVOCs was larger than other precursors,suggesting that they also played the dominant role in O_(3)formation.Furthermore,the positive matrix factorization model was used to identify the dominant emission sources and to evaluate their contribution to VOCs in the city.The main sources of VOCs in spring were from combustion(27.75%),industrial manufacturing(24.17%),vehicle exhaust(20.35%),and solvent utilization(18.35%).Discussions on VOCs and NO_(x)reduction schemes suggested that Chengdu was typical in the VOC-limited regime,and VOC emission reduction would help to prevent and control O_(3).The analysis of emission reduction scenarios based on VOCs sources showed that the emission reduction ratio of VOCs to NO_(2)needs to reach more than 3 in order to achieve O_(3)prevention.Emission reduction from vehicular exhaust source and solvent utilization source may be more effective.展开更多
We present the continuously measurements of volatile organic compounds(VOCs)at a receptor site(Wan Qing Sha,WQS)in the Pearl River Delta(PRD)region from September to November of 2017.The average mixing ratios of total...We present the continuously measurements of volatile organic compounds(VOCs)at a receptor site(Wan Qing Sha,WQS)in the Pearl River Delta(PRD)region from September to November of 2017.The average mixing ratios of total VOCs(TVOCs)was 36.3±27.9 ppbv with the dominant contribution from alkanes(55.5%),followed by aromatics(33.3%).The diurnal variation of TVOCs showed a strong photochemical consumption during daytime,resulting in the formation of ozone(O_(3)).Five VOC sources were resolved by the positive matrix factorization(PMF)model,including solvent usage(28.6%),liquid petroleum gas(LPG)usage(24.4%),vehicle exhaust(21.0%),industrial emissions(13.2%)and gasoline evaporation(12.9%).The regional transport air masses from the upwind cities of south China can result in the elevated concentrations of TVOCs.Low ratios of TVOCs/NO_(x)(1.53±0.88)suggested that the O_(3) formation regime at WQS site was VOC-limited,which also confirmed by a photochemical box model with the master chemical mechanism(PBM-MCM).Furthermore,the observation on high-O_(3) episode days revealed that frequent O_(3) outbreaks at WQS were mainly caused by the regional transport of anthropogenic VOCs especially for aromatics and the subsequent photochemical reactions.This study provides valuable information for policymakers to propose the effective control strategies on photochemical pollution in a regional perspective.展开更多
The biopharmaceutical industry contributes substantially to volatile organic compounds(VOCs)emissions,causing growing concerns and social developmental conflicts.This study conducted an on-site investigation of the pr...The biopharmaceutical industry contributes substantially to volatile organic compounds(VOCs)emissions,causing growing concerns and social developmental conflicts.This study conducted an on-site investigation of the process-based emission of VOCs from three biopharmaceutical enterprises.In the workshops of the three enterprises,26 VOCs were detected,which could be sorted into 4 classes:hydrocarbons,aromatic hydrocarbons,oxygen-containing compounds,and nitrogen-containing compounds.Ketones were the main components of waste gases,accounting for 44.13%-77.85%of the overall VOCs.Process-based source profiles were compiled for each process unit,with the fermentation and extraction units of tiamulin fumarate being the main source of VOC emissions.Dimethyl heptanone,vinyl acetate,diethylamine,propylene glycol methyl ether(PGME),and benzene were screened as priority pollutants through a fuzzy comprehensive evaluation system.Ground level concentration simulation results of the Gauss plume diffusion model demonstrated that the diffusivity of VOCs in the atmosphere was relatively high,indicating potential non-carcinogenic and carcinogenic risks 1.5-2 km downwind.Furthermore,the process-based formation potentials of ozone and secondary organic aerosols(SOAs)were determined and indicated that N-methyl-2-pyrrolidone,dimethyl heptanone,and PGME should be preferentially controlled to reduce the ozone formation potential,whereas the control of benzene and chlorobenzene should be prioritized to reduce the generation of SOAs.Our results provide a basis for understanding the characteristics of VOC emission by biopharmaceutical industries and their diffusion,potentially allowing the development of measures to reduce health risks and secondary pollution.展开更多
Anthropogenic emissions alter biogenic secondary organic aerosol(SOA)formation from naturally emitted volatileorganic compounds(BVOCs).We review the major laboratory and field findings with regard to effects of anthro...Anthropogenic emissions alter biogenic secondary organic aerosol(SOA)formation from naturally emitted volatileorganic compounds(BVOCs).We review the major laboratory and field findings with regard to effects of anthropogenicpollutants(NO_(x),anthropogenic aerosols,SO_(2),NH_(3))on biogenic SOA formation.NO_(x) participate in BVOC oxidationthrough changing the radical chemistry and oxidation capacity,leading to a complex SOA composition and yield sensitivitytowards NO_(x) level for different or even specific hydrocarbon precursors.Anthropogenic aerosols act as an importantintermedium for gas-particle partitioning and particle-phase reactions,processes of which are influenced by the particlephase state,acidity,water content and thus associated with biogenic SOA mass accumulation.SO_(2)modifies biogenic SOAformation mainly through sulfuric acid formation and accompanies new particle formation and acid-catalyzedheterogeneous reactions.Some new SO_(2)-involved mechanisms for organosulfate formation have also been proposed.NH_(3)/amines,as the most prevalent base species in the atmosphere,influence biogenic SOA composition and modify theoptical properties of SOA.The response of SOA formation behavior to these anthropogenic pollutants varies amongdifferent BVOCs precursors.Investigations on anthropogenic-biogenic interactions in some areas of China that aresimultaneously influenced by anthropogenic and biogenic emissions are summarized.Based on this review,somerecommendations are made for a more accurate assessment of controllable biogenic SOA formation and its contribution tothe total SOA budget.This study also highlights the importance of controlling anthropogenic pollutant emissions witheffective pollutant mitigation policies to reduce regional and global biogenic SOA formation.展开更多
Integral to the urban ecosystem,greening trees provide many ecological benefits,but the active biogenic volatile organic compounds(BVOCs)they release contribute to the production of ozone and secondary organic aerosol...Integral to the urban ecosystem,greening trees provide many ecological benefits,but the active biogenic volatile organic compounds(BVOCs)they release contribute to the production of ozone and secondary organic aerosols,which harm ambient air quality.It is,therefore,necessary to understand the BVOC emission characteristics of dominant greening tree species and their relative contribution to secondary pollutants in various urban contexts.Consequently,this study utilized a dynamic enclosure system to collect BVOC samples of seven dominant greening tree species in urban Chengdu,Southwest China.Gas chromatography/mass spectrometry was used to analyze the BVOC components and standardized BVOC emission rates of each tree species were then calculated to assess their relative potential to form secondary pollutants.We found obvious differences in the composition of BVOCs emitted by each species.Ficus virens displayed a high isoprene emission rate at31.472μgC/(gdw(g dry weight)·hr),while Cinnamomum camphora emitted high volumes of D-Limonene at 93.574μgC/(gdw·hr).In terms of the BVOC emission rates by leaf area,C.camphora had the highest emission rate of total BVOCs at 13,782.59μgC/(m^(2)·hr),followed by Cedrus deodara with 5466.86μgC/(m^(2)·hr).Ginkgo biloba and Osmanthus fragrans mainly emitted oxygenated VOCs with lower overall emission rates.The high BVOC emitters like F.virens,C.camphora,and Magnolia grandiflora have high potential for significantly contributing to environmental secondary pollutants,so should be cautiously considered for future planting.This study provides important implications for improving urban greening efforts for subtropical Chinese urban contexts,like Chengdu.展开更多
Volatile organic compounds(VOCs)are major contributors to air pollution.Based on the emission characteristics of 99 VOCs that daily measured at 10 am in winter from 15 December 2015 to 17 January 2016 and in summer fr...Volatile organic compounds(VOCs)are major contributors to air pollution.Based on the emission characteristics of 99 VOCs that daily measured at 10 am in winter from 15 December 2015 to 17 January 2016 and in summer from 21 July to 25 August 2016 in Beijing,the environmental impact and health risk of VOC were assessed.In the winter polluted days,the secondary organic aerosol formation potential(SOAP)of VOC(199.70±15.05 mg/m^3)was significantly higher than that on other days.And aromatics were the primary contributor(98.03%)to the SOAP during the observation period.Additionally,the result of the ozone formation potential(OFP)showed that ethylene contributed the most to OFP in winter(26.00%and 27.64%on the normal and polluted days).In summer,however,acetaldehyde was the primary contributor to OFP(22.00%and 21.61%on the normal and polluted days).Simultaneously,study showed that hazard ratios and lifetime cancer risk values of acrolein,chloroform,benzene,1,2-dichloroethane,acetaldehyde and 1,3-butadiene exceeded the thresholds established by USEPA,thereby presenting a health risk to the residents.Besides,the ratio of toluene-to-benzene indicated that vehicle exhausts were the main source of VOC pollution in Beijing.The ratio of m-/p-xylene-toethylbenzene demonstrated that there were more prominent atmospheric photochemical reactions in summer than that in winter.Finally,according to the potential source contribution function(PSCF)results,compared with local pollution sources,the spread of pollution from long-distance VOCs had a greater impact on Beijing.展开更多
基金supported by the Tianjin Fundamental Research Program of the Tianjin Committee of Science and Technology (Grant No. 10JCYBJC050800)the National Special Science and Technology Program for Non-Profit Industry of the Ministry of Environmental Protection (Grant No. 200909022)+2 种基金the 973 Program (Grant No. 2011CB403402)the National Natural Science Foundation of China (NSFC) (Grant No. 40875001)the Basic Research Fund of the Chinese Academy of Meteorological Sciences (Grant No. 2008Z011)
文摘Tianjin is the third largest megacity and the fastest growth area in China,and consequently faces the problems of surface ozone and haze episodes.This study measures and characterizes volatile organic compounds (VOCs),which are ozone precursors,to identify their possible sources and evaluate their contribution to ozone formation in urban and suburban Tianjin,China during the HaChi (Haze in China) summer campaign in 2009.A total of 107 species of ambient VOCs were detected,and the average concentrations of VOCs at urban and suburban sites were 92 and 174 ppbv,respectively.Of those,51 species of VOCs were extracted to analyze the possible VOC sources using positive matrix factorization.The identified sources of VOCs were significantly related to vehicular activities,which specifically contributed 60% to urban and 42% to suburban VOCs loadings in Tianjin.Industrial emission was the second most prominent source of ambient VOCs in both urban and suburban areas,although the contribution of industry in the suburban area (36%) was much higher than that at the urban area (16%).We conclude that controlling vehicle emissions should be a top priority for VOC reduction,and that fast industrialization and urbanization causes air pollution to be more complex due to the combined emission of VOCs from industry and daily life,especially in suburban areas.
基金supported by the Fundamental Research Funds for the Central Universities(2015XZZX004-04)Zhejiang Provincial Natural Science Foundation(LR15B030001)~~
文摘Volatile organic compounds(VOCs) are a major component in air pollutants and pose great risks to both human health and environmental protection. Currently, VOC abatement in industrial applications is through the use of activated carbons as adsorbents and oxide-supported metals as catalysts. Notably, activated carbons easily adsorb water, which strongly hinders the adsorption of VOCs; conventional oxides typically possess relatively low surface areas and random pores, which effectively influence the catalytic conversion of VOCs. Zeolites, in contrast with activated carbons and oxides, can be designed to have very uniform and controllable micropores, in addition to tailored wettability properties, which can favor the selective adsorption of VOCs. In particular, zeolites with selective adsorptive properties when combined with catalytically active metals result in zeolite-supported metals exhibiting significantly improved performance in the catalytic combustion of VOCs compared with conventional oxide-supported catalysts. In this review, recent developments on VOC abatement by adsorptive and catalytic techniques over zeolite-based materials have been briefly summarized.
基金supported by the National Basic Research Program(973 Program)of China:[Grant Number2012CB955800]the National Natural Science Foundation(863 Program)of China:[Grant Number 2012 AA063101]the "Strategic Priority Research Program" of the Chinese Academy of Sciences[Grant Number XDB05050200]
文摘The public health and ecological impacts of volatile organic compound(VOCs) pollution have become a serious problem in China,arousing increasing attention to emissions control.In this context,this paper analyses the effectiveness of VOC reduction policies,namely pollution charges and environmental taxes at the national and industrial sector levels.It uses a computable general equilibrium model,which connects macroeconomic variables with VOC emissions inventory,to simulate the effects of policy scenarios(with 2007 as the reference year).This paper shows that VOC emissions are reduced by 2.2% when a pollution charge equal to the average cost of engineering reduction methods-the traditional approach to regulation in China-is applied.In order to achieve a similar reduction,an 8.9% indirect tax would have to be imposed.It concludes that an environmental tax should be the preferred method of VOC regulation due to its smaller footprint on the macroeconomy.Other policies,such as subsidies,should be used as supplements.
基金This work was supported by the National Key R&D Program of China(Grant No.2017YFC0210000)the National Natural Science Foundation of China(Grant Nos.41705113 and 41877312)+1 种基金the Young Talent Project of the Center for Excellence in Regional Atmospheric Environment,Chinese Academy of Sciences(Grant No.CERAE201802)a Beijing Major Science and Technology Project(Grant No.Z181100005418014).
文摘The vertical observation of volatile organic compounds(VOCs)is an important means to clarify the mechanisms of ozone formation.To explore the vertical evolution of VOCs in summer,a field campaign using a tethered balloon during summer photochemical pollution was conducted in Shijiazhuang from 8 June to 3 July 2019.A total of 192 samples were collected,23 vertical profiles were obtained,and the concentrations of 87 VOCs were measured.The range of the total VOC concentration was 41-48 ppbv below 600 m.It then slightly increased above 600 m,and rose to 58±52 ppbv at 1000 m.The proportion of alkanes increased with height,while the proportions of alkenes,halohydrocarbons and acetylene decreased.The proportion of aromatics remained almost unchanged.A comparison with the results of a winter field campaign during 8-16 January 2019 showed that the concentrations of all VOCs in winter except for halohydrocarbons were more than twice those in summer.Alkanes accounted for the same proportion in winter and summer.Alkenes,aromatics,and acetylene accounted for higher proportions in winter,while halohydrocarbons accounted for a higher proportion in summer.There were five VOC sources in the vertical direction.The proportions of gasoline vehicular emissions+industrial sources and coal burning were higher in winter.The proportions of biogenic sources+long-range transport,solvent usage,and diesel vehicular emissions were higher in summer.From the surface to 1000 m,the proportion of gasoline vehicular emissions+industrial sources gradually increased.
基金Supported by the Science and Technology Special Project of Guangdong Province in 2019(SFK[2019]113-124)。
文摘Volatile organic compounds(VOCs)are important precursors of ozone and PM_(2.5).At present,VOCs have gradually become the focus of air pollution control after fine particles in China,and a series of documents,standards and planning on VOCs were issued from the state to each area.The analysis on source apportionment and control of VOCs have also become a hot spot in atmospheric environmental protection research of China at present stage.The research work on VOCs in ambient air is the basis and premise of scientific and effective prevention and control of VOCs pollution.In this paper,research progress on the monitoring of VOCs is introduced systemically,and main monitoring and evaluation methods of atmospheric VOCs are explored from monitoring analysis method,chemical reaction activity and health risk assessment.Moreover,concentration characteristics and source apportionment of VOCs in the regions at home and abroad that have carried out VOCs research work are compared and summarized.The research could provide reference for source apportionment of VOCs in other cities of China.
文摘Surface coating facilities are major sources of volatile organic compounds (VOCs) in urban areas. These VOCs can contribute to ground-level ozone formation, and many are hazardous air pollutants (HAPs), including xylene, ethylbenzene, and toluene. This project was conducted in order to provide information for updating the Texas Commission on Environmental Quality (TCEQ), USA, permit by rule for Surface Coating Facilities. Project objectives were: 1) To develop a database of information regarding surface coating facilities in Texas;2) To estimate maximum emission rates for various VOC species from surface coating facilities in Texas;3) To conduct dispersion modeling to estimate off-site impacts from surface coating facilities. The database was developed using 286 TCEQ permit files authorizing surface coating facilities in Texas during 2006 and 2007. The database was designed to include information important for estimating emission rates, and for using as inputs to the dispersion model. Hourly and annual emissions of volatile organic compounds (VOCs), particulate matter (PM), and exempt solvents (ES) were calculated for each permitted entity/ company in the database, according to equations given by TCEQ. Dispersion modeling was then conducted for 3 facility configurations (worst-case stack height, good practice stack height, and fugitive emissions), for urban and rural dispersion parameters, for 8-hour and 24-hour operating scenarios, and for 1-hour, 24-hour, and annual averaging times, for a total of 36 scenarios. The highest modeled concentrations were for the worst-case stack height, rural dispersion parameters, 24-hour operation scenario, and 1-hour averaging time. 108 specific chemical species, which are components of surface coatings, were identified as candidates for further health impacts review.
基金the Guiyang Research Academy of Eco-Environmental Science for partial support of this project。
文摘A survey was conducted of the volatile organic compounds(VOCs)released from sources of solvent use,industry activities and vehicle emissions in Guiyang,a capital city of China.Samples were collected by canisters and analyzed by GC-MS-FID.The species profiles of VOCs emitted from sources were obtained.Results showed that xylenes,ethylbenzene,acetone and dichloromethane were the characteristics species for painting,2-propanol and ethyl acetate for printing,α-pinene for solid wood furniture manufacturing,and 2-butanone for biscuit baking.These characteristics species could be as tracers for the sources respectively.In most of samples from the solvent use,the benzene/toluene(B/T)ratio was less than 0.3,indicating that the ratio could be as the indicator for tracing the solvent use related sources.The results also suggested that the toluene/xylene(T/X)ratio be as the indicator to distinguish the VOCs sources of painting(<2)from the printing(>2).Aromatics contributed the most to ozone formation potential(OFP)of most painting and non-paper printing sources,and oxygen-containing VOCs(OVOCs)were major species contributing to OFP of the sources from food production and paper printing.The OFP of the VOCs emissions from vehicle in tunnels and from other manufactures were dominated by both aromatics and alkenes.Theα-pinene could explain 56.94%and 32.54%of total OFP of the VOCs sources from filing cabinet and solid wood furniture manufacturing,which was rarely been involved in previous studies of VOCs source profiles,indicating that the species of concern for VOCs sources are still insufficient at present.
基金supported by the Major Program of Science and Technology of Hainan Province,China(No.ZDKJ202007)the Special Foundation of Government Financial of Hainan Province,China(No.ZC2018-196)the Youth Innovation Foundation of Hainan Research Academy of Environmental Sciences,China(No.QNCX2021002)。
文摘Based on one-year observation,the concentration,sources,and potential source areas of volatile organic compounds(VOCs)were comprehensively analyzed to investigate the pollution characteristics of ambient VOCs in Haikou,China.The results showed that the annual average concentration of total VOCs(TVOCs)was 11.4 ppb V,and the composition was dominated by alkanes(8.2 ppb V,71.4%)and alkenes(1.3 ppb V,20.5%).The diurnal variation in the concentration of dominant VOC species showed a distinct bimodal distribution with peaks in the morning and evening.The greatest contribution to ozone formation potential(OFP)was made by alkenes(51.6%),followed by alkanes(27.2%).The concentrations of VOCs and nitrogen dioxide(NO_(2))in spring and summer were low,and it was difficult to generate high ozone(O_(3))concentrations through photochemical reactions.The significant increase in O_(3)concentrations in autumn and winter was mainly related to the transmission of pollutants from the northeast.Traffic sources(40.1%),industrial sources(19.4%),combustion sources(18.6%),solvent usage sources(15.5%)and plant sources(6.4%)were identified as major sources of VOCs through the positive matrix factorization(PMF)model.The southeastern coastal areas of China were identified as major potential source areas of VOCs through the potential source contribution function(PSCF)and concentration-weighted trajectory(CWT)models.Overall,the concentration of ambient VOCs in Haikou was strongly influenced by traffic sources and long-distance transport,and the control of VOCs emitted from vehicles should be strengthened to reduce the active species of ambient VOCs in Haikou,thereby reducing the generation of O_(3).
基金supported by the National Key Research and Development Program of China(Nos.2016YFC0202200,2017YFC0209703)the National Natural Science Foundation of China(Nos.91544211,4127805,41575121,21707151)the National research program for Key issues in air pollution control(Nos.DQGG0103,DQGG0206,DQGG0209)
文摘Air concentrations of volatile organic compounds(VOCs) were continually measured at a monitoring site in Shenyang from 20 August to 16 September 2017. The average concentrations of alkanes, alkenes, aromatics and carbonyls were 28.54, 6.30, 5.59 and9.78 ppbv, respectively. Seven sources were identified by the Positive Matrix Factorization model based on the measurement data of VOCs and CO. Vehicle exhaust contributed the most(36.15%) to the total propene-equivalent concentration of the measured VOCs,followed by combustion emission(16.92%), vegetation emission and secondary formation(14.33%), solvent usage(10.59%), petrochemical industry emission(9.89%), petrol evaporation(6.28%), and liquefied petroleum gas(LPG) usage(5.84%). Vehicle exhaust, solvent usage and combustion emission were found to be the top three VOC sources for O_3 formation potential, accounting for 34.52%, 16.55% and 11.94%, respectively. The diurnal variation of the total VOCs from each source could be well explained by their emission characteristics,e.g., the two peaks of VOC concentrations from LPG usage were in line with the cooking times for breakfast and lunch. Wind rose plots of the VOCs from each source could reveal the possible distribution of the sources around the monitoring site. The O_3 pollution episodes during the measurement period were found to be coincident with the elevation of VOCs, which was mainly due to the air parcel from the southeast direction where petrochemical industry emission was found to be dominant, suggesting that the petrochemical industry emission from the southeast was probably a significant cause of O_3 pollution in Shenyang.
基金supported by the National Natural Science Foundation of China(No.21906108)the Fundamental Research Funds for the Central Universities(No.YJ201937)Chengdu Science and Technology Bureau(No.2020-YF09-00051-SN)
文摘Surface ozone(O_(3))has become a critical pollutant impeding air quality improvement in many Chinese megacities.Chengdu is a megacity located in Sichuan Basin in southwest China,where O_(3)pollution occurs frequently in both spring and summer.In order to understand the elevated O_(3)during spring in Chengdu,we conducted sampling campaign at three sites during O_(3)pollution episodes in April.Volatile organic compounds(VOCs)compositions at each site were similar,and oxygenated VOCs(OVOCs)concentrations accounted for the highest proportion(35%-45%),followed by alkanes,alkens(including acetylene),halohydrocarbons,and aromatics.The sensitivity of O_(3)to its precursors was analyzed using an observation based box model.The relative incremental reactivity of OVOCs was larger than other precursors,suggesting that they also played the dominant role in O_(3)formation.Furthermore,the positive matrix factorization model was used to identify the dominant emission sources and to evaluate their contribution to VOCs in the city.The main sources of VOCs in spring were from combustion(27.75%),industrial manufacturing(24.17%),vehicle exhaust(20.35%),and solvent utilization(18.35%).Discussions on VOCs and NO_(x)reduction schemes suggested that Chengdu was typical in the VOC-limited regime,and VOC emission reduction would help to prevent and control O_(3).The analysis of emission reduction scenarios based on VOCs sources showed that the emission reduction ratio of VOCs to NO_(2)needs to reach more than 3 in order to achieve O_(3)prevention.Emission reduction from vehicular exhaust source and solvent utilization source may be more effective.
基金supported by the National Key R&D Program of China(Nos.2017YFC0212802 and 2017YFC0212004)the support of MOST project(No.2017YFC0212001)for the collaboration。
文摘We present the continuously measurements of volatile organic compounds(VOCs)at a receptor site(Wan Qing Sha,WQS)in the Pearl River Delta(PRD)region from September to November of 2017.The average mixing ratios of total VOCs(TVOCs)was 36.3±27.9 ppbv with the dominant contribution from alkanes(55.5%),followed by aromatics(33.3%).The diurnal variation of TVOCs showed a strong photochemical consumption during daytime,resulting in the formation of ozone(O_(3)).Five VOC sources were resolved by the positive matrix factorization(PMF)model,including solvent usage(28.6%),liquid petroleum gas(LPG)usage(24.4%),vehicle exhaust(21.0%),industrial emissions(13.2%)and gasoline evaporation(12.9%).The regional transport air masses from the upwind cities of south China can result in the elevated concentrations of TVOCs.Low ratios of TVOCs/NO_(x)(1.53±0.88)suggested that the O_(3) formation regime at WQS site was VOC-limited,which also confirmed by a photochemical box model with the master chemical mechanism(PBM-MCM).Furthermore,the observation on high-O_(3) episode days revealed that frequent O_(3) outbreaks at WQS were mainly caused by the regional transport of anthropogenic VOCs especially for aromatics and the subsequent photochemical reactions.This study provides valuable information for policymakers to propose the effective control strategies on photochemical pollution in a regional perspective.
基金financially supported by the National Natural Science Foundation of China (No.51878650)。
文摘The biopharmaceutical industry contributes substantially to volatile organic compounds(VOCs)emissions,causing growing concerns and social developmental conflicts.This study conducted an on-site investigation of the process-based emission of VOCs from three biopharmaceutical enterprises.In the workshops of the three enterprises,26 VOCs were detected,which could be sorted into 4 classes:hydrocarbons,aromatic hydrocarbons,oxygen-containing compounds,and nitrogen-containing compounds.Ketones were the main components of waste gases,accounting for 44.13%-77.85%of the overall VOCs.Process-based source profiles were compiled for each process unit,with the fermentation and extraction units of tiamulin fumarate being the main source of VOC emissions.Dimethyl heptanone,vinyl acetate,diethylamine,propylene glycol methyl ether(PGME),and benzene were screened as priority pollutants through a fuzzy comprehensive evaluation system.Ground level concentration simulation results of the Gauss plume diffusion model demonstrated that the diffusivity of VOCs in the atmosphere was relatively high,indicating potential non-carcinogenic and carcinogenic risks 1.5-2 km downwind.Furthermore,the process-based formation potentials of ozone and secondary organic aerosols(SOAs)were determined and indicated that N-methyl-2-pyrrolidone,dimethyl heptanone,and PGME should be preferentially controlled to reduce the ozone formation potential,whereas the control of benzene and chlorobenzene should be prioritized to reduce the generation of SOAs.Our results provide a basis for understanding the characteristics of VOC emission by biopharmaceutical industries and their diffusion,potentially allowing the development of measures to reduce health risks and secondary pollution.
基金This work was supported by National Natural Science Foundation of China(Grant No.91644214)Youth Innovation Program of Universities in Shandong Province(Grant No.2019KJD007)Fundamental Research Fund of Shandong University(Grant No.2020QNQT012).
文摘Anthropogenic emissions alter biogenic secondary organic aerosol(SOA)formation from naturally emitted volatileorganic compounds(BVOCs).We review the major laboratory and field findings with regard to effects of anthropogenicpollutants(NO_(x),anthropogenic aerosols,SO_(2),NH_(3))on biogenic SOA formation.NO_(x) participate in BVOC oxidationthrough changing the radical chemistry and oxidation capacity,leading to a complex SOA composition and yield sensitivitytowards NO_(x) level for different or even specific hydrocarbon precursors.Anthropogenic aerosols act as an importantintermedium for gas-particle partitioning and particle-phase reactions,processes of which are influenced by the particlephase state,acidity,water content and thus associated with biogenic SOA mass accumulation.SO_(2)modifies biogenic SOAformation mainly through sulfuric acid formation and accompanies new particle formation and acid-catalyzedheterogeneous reactions.Some new SO_(2)-involved mechanisms for organosulfate formation have also been proposed.NH_(3)/amines,as the most prevalent base species in the atmosphere,influence biogenic SOA composition and modify theoptical properties of SOA.The response of SOA formation behavior to these anthropogenic pollutants varies amongdifferent BVOCs precursors.Investigations on anthropogenic-biogenic interactions in some areas of China that aresimultaneously influenced by anthropogenic and biogenic emissions are summarized.Based on this review,somerecommendations are made for a more accurate assessment of controllable biogenic SOA formation and its contribution tothe total SOA budget.This study also highlights the importance of controlling anthropogenic pollutant emissions witheffective pollutant mitigation policies to reduce regional and global biogenic SOA formation.
基金supported by the National Natural Science Foundation of China(No.21906108)the Fundamental Research Funds for the Central Universities(No.YJ201937)+1 种基金Chengdu Science and Technology Bureau(No.2020-YF09-00051-SN)the Sichuan"1000 Plan"Scholar Program
文摘Integral to the urban ecosystem,greening trees provide many ecological benefits,but the active biogenic volatile organic compounds(BVOCs)they release contribute to the production of ozone and secondary organic aerosols,which harm ambient air quality.It is,therefore,necessary to understand the BVOC emission characteristics of dominant greening tree species and their relative contribution to secondary pollutants in various urban contexts.Consequently,this study utilized a dynamic enclosure system to collect BVOC samples of seven dominant greening tree species in urban Chengdu,Southwest China.Gas chromatography/mass spectrometry was used to analyze the BVOC components and standardized BVOC emission rates of each tree species were then calculated to assess their relative potential to form secondary pollutants.We found obvious differences in the composition of BVOCs emitted by each species.Ficus virens displayed a high isoprene emission rate at31.472μgC/(gdw(g dry weight)·hr),while Cinnamomum camphora emitted high volumes of D-Limonene at 93.574μgC/(gdw·hr).In terms of the BVOC emission rates by leaf area,C.camphora had the highest emission rate of total BVOCs at 13,782.59μgC/(m^(2)·hr),followed by Cedrus deodara with 5466.86μgC/(m^(2)·hr).Ginkgo biloba and Osmanthus fragrans mainly emitted oxygenated VOCs with lower overall emission rates.The high BVOC emitters like F.virens,C.camphora,and Magnolia grandiflora have high potential for significantly contributing to environmental secondary pollutants,so should be cautiously considered for future planting.This study provides important implications for improving urban greening efforts for subtropical Chinese urban contexts,like Chengdu.
基金supported by the National Key R&D Program of China(No.2016YFC0202500)the National Natural Science Foundation of China(Nos.21677163 and 21876193)+1 种基金the Chengdu Science and Technology Project(No.2018-ZM01-00019-SN)the Youth Innovation Promotion Association CAS。
文摘Volatile organic compounds(VOCs)are major contributors to air pollution.Based on the emission characteristics of 99 VOCs that daily measured at 10 am in winter from 15 December 2015 to 17 January 2016 and in summer from 21 July to 25 August 2016 in Beijing,the environmental impact and health risk of VOC were assessed.In the winter polluted days,the secondary organic aerosol formation potential(SOAP)of VOC(199.70±15.05 mg/m^3)was significantly higher than that on other days.And aromatics were the primary contributor(98.03%)to the SOAP during the observation period.Additionally,the result of the ozone formation potential(OFP)showed that ethylene contributed the most to OFP in winter(26.00%and 27.64%on the normal and polluted days).In summer,however,acetaldehyde was the primary contributor to OFP(22.00%and 21.61%on the normal and polluted days).Simultaneously,study showed that hazard ratios and lifetime cancer risk values of acrolein,chloroform,benzene,1,2-dichloroethane,acetaldehyde and 1,3-butadiene exceeded the thresholds established by USEPA,thereby presenting a health risk to the residents.Besides,the ratio of toluene-to-benzene indicated that vehicle exhausts were the main source of VOC pollution in Beijing.The ratio of m-/p-xylene-toethylbenzene demonstrated that there were more prominent atmospheric photochemical reactions in summer than that in winter.Finally,according to the potential source contribution function(PSCF)results,compared with local pollution sources,the spread of pollution from long-distance VOCs had a greater impact on Beijing.