期刊文献+
共找到902篇文章
< 1 2 46 >
每页显示 20 50 100
Characterization and Source Apportionment of Volatile Organic Compounds in Urban and Suburban Tianjin, China 被引量:19
1
作者 HAN Meng LU Xueqiang +2 位作者 ZHAO Chunsheng RAN Liang HAN Suqin 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第3期439-444,共6页
Tianjin is the third largest megacity and the fastest growth area in China,and consequently faces the problems of surface ozone and haze episodes.This study measures and characterizes volatile organic compounds (VOCs... Tianjin is the third largest megacity and the fastest growth area in China,and consequently faces the problems of surface ozone and haze episodes.This study measures and characterizes volatile organic compounds (VOCs),which are ozone precursors,to identify their possible sources and evaluate their contribution to ozone formation in urban and suburban Tianjin,China during the HaChi (Haze in China) summer campaign in 2009.A total of 107 species of ambient VOCs were detected,and the average concentrations of VOCs at urban and suburban sites were 92 and 174 ppbv,respectively.Of those,51 species of VOCs were extracted to analyze the possible VOC sources using positive matrix factorization.The identified sources of VOCs were significantly related to vehicular activities,which specifically contributed 60% to urban and 42% to suburban VOCs loadings in Tianjin.Industrial emission was the second most prominent source of ambient VOCs in both urban and suburban areas,although the contribution of industry in the suburban area (36%) was much higher than that at the urban area (16%).We conclude that controlling vehicle emissions should be a top priority for VOC reduction,and that fast industrialization and urbanization causes air pollution to be more complex due to the combined emission of VOCs from industry and daily life,especially in suburban areas. 展开更多
关键词 volatile organic compounds source apportionment positive matrix factorization OZONE MEGACITY
下载PDF
Adsorptive and catalytic properties in the removal of volatile organic compounds over zeolite-based materials 被引量:47
2
作者 章凌 彭悦欣 +3 位作者 张娟 陈龙 孟祥举 肖丰收 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第6期800-809,共10页
Volatile organic compounds(VOCs) are a major component in air pollutants and pose great risks to both human health and environmental protection. Currently, VOC abatement in industrial applications is through the use... Volatile organic compounds(VOCs) are a major component in air pollutants and pose great risks to both human health and environmental protection. Currently, VOC abatement in industrial applications is through the use of activated carbons as adsorbents and oxide-supported metals as catalysts. Notably, activated carbons easily adsorb water, which strongly hinders the adsorption of VOCs; conventional oxides typically possess relatively low surface areas and random pores, which effectively influence the catalytic conversion of VOCs. Zeolites, in contrast with activated carbons and oxides, can be designed to have very uniform and controllable micropores, in addition to tailored wettability properties, which can favor the selective adsorption of VOCs. In particular, zeolites with selective adsorptive properties when combined with catalytically active metals result in zeolite-supported metals exhibiting significantly improved performance in the catalytic combustion of VOCs compared with conventional oxide-supported catalysts. In this review, recent developments on VOC abatement by adsorptive and catalytic techniques over zeolite-based materials have been briefly summarized. 展开更多
关键词 Air pollution volatile organic compound ZEOLITE Supported catalyst Catalytic combustion
下载PDF
Comparision of China's volatile organic compound pollution management:a computable general equilibrium approach 被引量:2
3
作者 Yufei Wang Changxin Liu +2 位作者 Tong Wu Zhengping Hao Zheng Wang 《Chinese Journal of Population,Resources and Environment》 2016年第4期298-308,共11页
The public health and ecological impacts of volatile organic compound(VOCs) pollution have become a serious problem in China,arousing increasing attention to emissions control.In this context,this paper analyses the e... The public health and ecological impacts of volatile organic compound(VOCs) pollution have become a serious problem in China,arousing increasing attention to emissions control.In this context,this paper analyses the effectiveness of VOC reduction policies,namely pollution charges and environmental taxes at the national and industrial sector levels.It uses a computable general equilibrium model,which connects macroeconomic variables with VOC emissions inventory,to simulate the effects of policy scenarios(with 2007 as the reference year).This paper shows that VOC emissions are reduced by 2.2% when a pollution charge equal to the average cost of engineering reduction methods-the traditional approach to regulation in China-is applied.In order to achieve a similar reduction,an 8.9% indirect tax would have to be imposed.It concludes that an environmental tax should be the preferred method of VOC regulation due to its smaller footprint on the macroeconomy.Other policies,such as subsidies,should be used as supplements. 展开更多
关键词 volatile organic compounds environmental tax pollution charge computable general equilibrium models
下载PDF
Vertical Evolution of Boundary Layer Volatile Organic Compounds in Summer over the North China Plain and the Differences with Winter 被引量:4
4
作者 Shuang WU Guiqian TANG +5 位作者 Yinghong WANG Rong MAI Dan YAO Yanyu KANG Qinglu WANG Yuesi WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第7期1165-1176,共12页
The vertical observation of volatile organic compounds(VOCs)is an important means to clarify the mechanisms of ozone formation.To explore the vertical evolution of VOCs in summer,a field campaign using a tethered ball... The vertical observation of volatile organic compounds(VOCs)is an important means to clarify the mechanisms of ozone formation.To explore the vertical evolution of VOCs in summer,a field campaign using a tethered balloon during summer photochemical pollution was conducted in Shijiazhuang from 8 June to 3 July 2019.A total of 192 samples were collected,23 vertical profiles were obtained,and the concentrations of 87 VOCs were measured.The range of the total VOC concentration was 41-48 ppbv below 600 m.It then slightly increased above 600 m,and rose to 58±52 ppbv at 1000 m.The proportion of alkanes increased with height,while the proportions of alkenes,halohydrocarbons and acetylene decreased.The proportion of aromatics remained almost unchanged.A comparison with the results of a winter field campaign during 8-16 January 2019 showed that the concentrations of all VOCs in winter except for halohydrocarbons were more than twice those in summer.Alkanes accounted for the same proportion in winter and summer.Alkenes,aromatics,and acetylene accounted for higher proportions in winter,while halohydrocarbons accounted for a higher proportion in summer.There were five VOC sources in the vertical direction.The proportions of gasoline vehicular emissions+industrial sources and coal burning were higher in winter.The proportions of biogenic sources+long-range transport,solvent usage,and diesel vehicular emissions were higher in summer.From the surface to 1000 m,the proportion of gasoline vehicular emissions+industrial sources gradually increased. 展开更多
关键词 volatile organic compounds vertical profile planetary boundary layer source apportionment
下载PDF
Research Progress on the Monitoring of Precursor of Atmospheric Ozone——Volatile Organic Compounds 被引量:1
5
作者 Shuchi CHEN Yiyao HUANG +3 位作者 Miao CHEN Juan LI Lianghong XIAO Yan GUO 《Meteorological and Environmental Research》 CAS 2020年第2期29-36,共8页
Volatile organic compounds(VOCs)are important precursors of ozone and PM_(2.5).At present,VOCs have gradually become the focus of air pollution control after fine particles in China,and a series of documents,standards... Volatile organic compounds(VOCs)are important precursors of ozone and PM_(2.5).At present,VOCs have gradually become the focus of air pollution control after fine particles in China,and a series of documents,standards and planning on VOCs were issued from the state to each area.The analysis on source apportionment and control of VOCs have also become a hot spot in atmospheric environmental protection research of China at present stage.The research work on VOCs in ambient air is the basis and premise of scientific and effective prevention and control of VOCs pollution.In this paper,research progress on the monitoring of VOCs is introduced systemically,and main monitoring and evaluation methods of atmospheric VOCs are explored from monitoring analysis method,chemical reaction activity and health risk assessment.Moreover,concentration characteristics and source apportionment of VOCs in the regions at home and abroad that have carried out VOCs research work are compared and summarized.The research could provide reference for source apportionment of VOCs in other cities of China. 展开更多
关键词 volatile organic compounds(VOCs) OZONE Chemical composition source analysis
下载PDF
Volatile Organic Compound Emissions from Surface Coating Facilities: Characterization of Facilities, Estimation of Emission Rates, and Dispersion Modeling of Off-Site Impacts
6
作者 Annabrabha Athappan Sulak Sumitsawan +7 位作者 Roja Haritha Gangupomu Ketwalee Kositkanawuth Parthen Parikh Benjamin Afotey Neelesh Sule Sahithi Raj Kalidindi Melanie L. Sattler Yvette Pearson Weatherton 《Journal of Environmental Protection》 2013年第8期123-141,共19页
Surface coating facilities are major sources of volatile organic compounds (VOCs) in urban areas. These VOCs can contribute to ground-level ozone formation, and many are hazardous air pollutants (HAPs), including xyle... Surface coating facilities are major sources of volatile organic compounds (VOCs) in urban areas. These VOCs can contribute to ground-level ozone formation, and many are hazardous air pollutants (HAPs), including xylene, ethylbenzene, and toluene. This project was conducted in order to provide information for updating the Texas Commission on Environmental Quality (TCEQ), USA, permit by rule for Surface Coating Facilities. Project objectives were: 1) To develop a database of information regarding surface coating facilities in Texas;2) To estimate maximum emission rates for various VOC species from surface coating facilities in Texas;3) To conduct dispersion modeling to estimate off-site impacts from surface coating facilities. The database was developed using 286 TCEQ permit files authorizing surface coating facilities in Texas during 2006 and 2007. The database was designed to include information important for estimating emission rates, and for using as inputs to the dispersion model. Hourly and annual emissions of volatile organic compounds (VOCs), particulate matter (PM), and exempt solvents (ES) were calculated for each permitted entity/ company in the database, according to equations given by TCEQ. Dispersion modeling was then conducted for 3 facility configurations (worst-case stack height, good practice stack height, and fugitive emissions), for urban and rural dispersion parameters, for 8-hour and 24-hour operating scenarios, and for 1-hour, 24-hour, and annual averaging times, for a total of 36 scenarios. The highest modeled concentrations were for the worst-case stack height, rural dispersion parameters, 24-hour operation scenario, and 1-hour averaging time. 108 specific chemical species, which are components of surface coatings, were identified as candidates for further health impacts review. 展开更多
关键词 volatile organic compounds Hazardous Air pollutANTS Surface Coating Facilities EMISSIONS DISPERSION Modeling
下载PDF
Species profile and reactivity of volatile organic compounds emission in solvent uses,industry activities and from vehicular tunnels
7
作者 Haimei Huang Zhangwei Wang +4 位作者 Chunhao Dai Hai Wu Jia Guo Chunjie Wang Xiaoshan Zhang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第1期546-559,共14页
A survey was conducted of the volatile organic compounds(VOCs)released from sources of solvent use,industry activities and vehicle emissions in Guiyang,a capital city of China.Samples were collected by canisters and a... A survey was conducted of the volatile organic compounds(VOCs)released from sources of solvent use,industry activities and vehicle emissions in Guiyang,a capital city of China.Samples were collected by canisters and analyzed by GC-MS-FID.The species profiles of VOCs emitted from sources were obtained.Results showed that xylenes,ethylbenzene,acetone and dichloromethane were the characteristics species for painting,2-propanol and ethyl acetate for printing,α-pinene for solid wood furniture manufacturing,and 2-butanone for biscuit baking.These characteristics species could be as tracers for the sources respectively.In most of samples from the solvent use,the benzene/toluene(B/T)ratio was less than 0.3,indicating that the ratio could be as the indicator for tracing the solvent use related sources.The results also suggested that the toluene/xylene(T/X)ratio be as the indicator to distinguish the VOCs sources of painting(<2)from the printing(>2).Aromatics contributed the most to ozone formation potential(OFP)of most painting and non-paper printing sources,and oxygen-containing VOCs(OVOCs)were major species contributing to OFP of the sources from food production and paper printing.The OFP of the VOCs emissions from vehicle in tunnels and from other manufactures were dominated by both aromatics and alkenes.Theα-pinene could explain 56.94%and 32.54%of total OFP of the VOCs sources from filing cabinet and solid wood furniture manufacturing,which was rarely been involved in previous studies of VOCs source profiles,indicating that the species of concern for VOCs sources are still insufficient at present. 展开更多
关键词 volatile organic compounds(VOCs) Species profile BTEX ratio source reactivity
原文传递
Characterization,reactivity,source apportionment,and potential source areas of ambient volatile organic compounds in a typical tropical city 被引量:2
8
作者 Xiaocong Cao Qiao Xing +6 位作者 Shanhu Hu Wenshuai Xu Rongfu Xie Aidan Xian Wenjing Xie Zhaohui Yang Xiaochen Wu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第1期417-429,共13页
Based on one-year observation,the concentration,sources,and potential source areas of volatile organic compounds(VOCs)were comprehensively analyzed to investigate the pollution characteristics of ambient VOCs in Haiko... Based on one-year observation,the concentration,sources,and potential source areas of volatile organic compounds(VOCs)were comprehensively analyzed to investigate the pollution characteristics of ambient VOCs in Haikou,China.The results showed that the annual average concentration of total VOCs(TVOCs)was 11.4 ppb V,and the composition was dominated by alkanes(8.2 ppb V,71.4%)and alkenes(1.3 ppb V,20.5%).The diurnal variation in the concentration of dominant VOC species showed a distinct bimodal distribution with peaks in the morning and evening.The greatest contribution to ozone formation potential(OFP)was made by alkenes(51.6%),followed by alkanes(27.2%).The concentrations of VOCs and nitrogen dioxide(NO_(2))in spring and summer were low,and it was difficult to generate high ozone(O_(3))concentrations through photochemical reactions.The significant increase in O_(3)concentrations in autumn and winter was mainly related to the transmission of pollutants from the northeast.Traffic sources(40.1%),industrial sources(19.4%),combustion sources(18.6%),solvent usage sources(15.5%)and plant sources(6.4%)were identified as major sources of VOCs through the positive matrix factorization(PMF)model.The southeastern coastal areas of China were identified as major potential source areas of VOCs through the potential source contribution function(PSCF)and concentration-weighted trajectory(CWT)models.Overall,the concentration of ambient VOCs in Haikou was strongly influenced by traffic sources and long-distance transport,and the control of VOCs emitted from vehicles should be strengthened to reduce the active species of ambient VOCs in Haikou,thereby reducing the generation of O_(3). 展开更多
关键词 volatile organic compounds(VOCs) Ozone Positive matrix factorization(PMF) model Backward trajectory Potential source area
原文传递
The levels, sources and reactivity of volatile organic compounds in a typical urban area of Northeast China 被引量:15
9
作者 Zhuobiao Ma Chengtang Liu +8 位作者 Chenglong Zhang Pengfei Liu Can Ye Chaoyang Xue Di Zhao Jichen Sun Yiming Du Fahe Chai Yujing Mu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2019年第5期121-134,共14页
Air concentrations of volatile organic compounds(VOCs) were continually measured at a monitoring site in Shenyang from 20 August to 16 September 2017. The average concentrations of alkanes, alkenes, aromatics and carb... Air concentrations of volatile organic compounds(VOCs) were continually measured at a monitoring site in Shenyang from 20 August to 16 September 2017. The average concentrations of alkanes, alkenes, aromatics and carbonyls were 28.54, 6.30, 5.59 and9.78 ppbv, respectively. Seven sources were identified by the Positive Matrix Factorization model based on the measurement data of VOCs and CO. Vehicle exhaust contributed the most(36.15%) to the total propene-equivalent concentration of the measured VOCs,followed by combustion emission(16.92%), vegetation emission and secondary formation(14.33%), solvent usage(10.59%), petrochemical industry emission(9.89%), petrol evaporation(6.28%), and liquefied petroleum gas(LPG) usage(5.84%). Vehicle exhaust, solvent usage and combustion emission were found to be the top three VOC sources for O_3 formation potential, accounting for 34.52%, 16.55% and 11.94%, respectively. The diurnal variation of the total VOCs from each source could be well explained by their emission characteristics,e.g., the two peaks of VOC concentrations from LPG usage were in line with the cooking times for breakfast and lunch. Wind rose plots of the VOCs from each source could reveal the possible distribution of the sources around the monitoring site. The O_3 pollution episodes during the measurement period were found to be coincident with the elevation of VOCs, which was mainly due to the air parcel from the southeast direction where petrochemical industry emission was found to be dominant, suggesting that the petrochemical industry emission from the southeast was probably a significant cause of O_3 pollution in Shenyang. 展开更多
关键词 volatile organic compounds source APPORTIONMENT PHOTOCHEMICAL ozone formation Field measurement
原文传递
Characteristics of ambient volatile organic compounds during spring O_(3) pollution episode in Chengdu,China
10
作者 Dongyang Chen Li Zhou +6 位作者 Chen Wang Hefan Liu Yang Qiu Guangming Shi Danlin Song Qinwen Tan Fumo Yang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第4期115-125,共11页
Surface ozone(O_(3))has become a critical pollutant impeding air quality improvement in many Chinese megacities.Chengdu is a megacity located in Sichuan Basin in southwest China,where O_(3)pollution occurs frequently ... Surface ozone(O_(3))has become a critical pollutant impeding air quality improvement in many Chinese megacities.Chengdu is a megacity located in Sichuan Basin in southwest China,where O_(3)pollution occurs frequently in both spring and summer.In order to understand the elevated O_(3)during spring in Chengdu,we conducted sampling campaign at three sites during O_(3)pollution episodes in April.Volatile organic compounds(VOCs)compositions at each site were similar,and oxygenated VOCs(OVOCs)concentrations accounted for the highest proportion(35%-45%),followed by alkanes,alkens(including acetylene),halohydrocarbons,and aromatics.The sensitivity of O_(3)to its precursors was analyzed using an observation based box model.The relative incremental reactivity of OVOCs was larger than other precursors,suggesting that they also played the dominant role in O_(3)formation.Furthermore,the positive matrix factorization model was used to identify the dominant emission sources and to evaluate their contribution to VOCs in the city.The main sources of VOCs in spring were from combustion(27.75%),industrial manufacturing(24.17%),vehicle exhaust(20.35%),and solvent utilization(18.35%).Discussions on VOCs and NO_(x)reduction schemes suggested that Chengdu was typical in the VOC-limited regime,and VOC emission reduction would help to prevent and control O_(3).The analysis of emission reduction scenarios based on VOCs sources showed that the emission reduction ratio of VOCs to NO_(2)needs to reach more than 3 in order to achieve O_(3)prevention.Emission reduction from vehicular exhaust source and solvent utilization source may be more effective. 展开更多
关键词 volatile organic compounds Ozone sensitivity Observation-based box model source apportionments Chengdu
原文传递
Ambient volatile organic compounds at a receptor site in the Pearl River Delta region:Variations,source apportionment and effects on ozone formation 被引量:7
11
作者 Yao Meng Junwei Song +10 位作者 Lewei Zeng Yingyi Zhang Yan Zhao Xufei Liu Hai Guo Liuju Zhong Yubo Ou Yan Zhou Tao Zhang Dingli Yue Senchao Lai 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第1期104-117,共14页
We present the continuously measurements of volatile organic compounds(VOCs)at a receptor site(Wan Qing Sha,WQS)in the Pearl River Delta(PRD)region from September to November of 2017.The average mixing ratios of total... We present the continuously measurements of volatile organic compounds(VOCs)at a receptor site(Wan Qing Sha,WQS)in the Pearl River Delta(PRD)region from September to November of 2017.The average mixing ratios of total VOCs(TVOCs)was 36.3±27.9 ppbv with the dominant contribution from alkanes(55.5%),followed by aromatics(33.3%).The diurnal variation of TVOCs showed a strong photochemical consumption during daytime,resulting in the formation of ozone(O_(3)).Five VOC sources were resolved by the positive matrix factorization(PMF)model,including solvent usage(28.6%),liquid petroleum gas(LPG)usage(24.4%),vehicle exhaust(21.0%),industrial emissions(13.2%)and gasoline evaporation(12.9%).The regional transport air masses from the upwind cities of south China can result in the elevated concentrations of TVOCs.Low ratios of TVOCs/NO_(x)(1.53±0.88)suggested that the O_(3) formation regime at WQS site was VOC-limited,which also confirmed by a photochemical box model with the master chemical mechanism(PBM-MCM).Furthermore,the observation on high-O_(3) episode days revealed that frequent O_(3) outbreaks at WQS were mainly caused by the regional transport of anthropogenic VOCs especially for aromatics and the subsequent photochemical reactions.This study provides valuable information for policymakers to propose the effective control strategies on photochemical pollution in a regional perspective. 展开更多
关键词 volatile organic compounds(VOCs) Pearl River Delta(PRD)region source apportionment Ozone(O_(3)) Regional transport
原文传递
VOC emitted by biopharmaceutical industries:Source profiles,health risks,and secondary pollution
12
作者 Jiawei Ma Lin Li 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第1期570-584,共15页
The biopharmaceutical industry contributes substantially to volatile organic compounds(VOCs)emissions,causing growing concerns and social developmental conflicts.This study conducted an on-site investigation of the pr... The biopharmaceutical industry contributes substantially to volatile organic compounds(VOCs)emissions,causing growing concerns and social developmental conflicts.This study conducted an on-site investigation of the process-based emission of VOCs from three biopharmaceutical enterprises.In the workshops of the three enterprises,26 VOCs were detected,which could be sorted into 4 classes:hydrocarbons,aromatic hydrocarbons,oxygen-containing compounds,and nitrogen-containing compounds.Ketones were the main components of waste gases,accounting for 44.13%-77.85%of the overall VOCs.Process-based source profiles were compiled for each process unit,with the fermentation and extraction units of tiamulin fumarate being the main source of VOC emissions.Dimethyl heptanone,vinyl acetate,diethylamine,propylene glycol methyl ether(PGME),and benzene were screened as priority pollutants through a fuzzy comprehensive evaluation system.Ground level concentration simulation results of the Gauss plume diffusion model demonstrated that the diffusivity of VOCs in the atmosphere was relatively high,indicating potential non-carcinogenic and carcinogenic risks 1.5-2 km downwind.Furthermore,the process-based formation potentials of ozone and secondary organic aerosols(SOAs)were determined and indicated that N-methyl-2-pyrrolidone,dimethyl heptanone,and PGME should be preferentially controlled to reduce the ozone formation potential,whereas the control of benzene and chlorobenzene should be prioritized to reduce the generation of SOAs.Our results provide a basis for understanding the characteristics of VOC emission by biopharmaceutical industries and their diffusion,potentially allowing the development of measures to reduce health risks and secondary pollution. 展开更多
关键词 BIOPHARMACEUTICAL volatile organic compound Priority pollutant Exposure risk Secondary pollution
原文传递
Anthropogenic Effects on Biogenic Secondary Organic Aerosol Formation 被引量:3
13
作者 Li XU Lin DU +1 位作者 Narcisse T.TSONA Maofa GE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第7期1053-1084,共32页
Anthropogenic emissions alter biogenic secondary organic aerosol(SOA)formation from naturally emitted volatileorganic compounds(BVOCs).We review the major laboratory and field findings with regard to effects of anthro... Anthropogenic emissions alter biogenic secondary organic aerosol(SOA)formation from naturally emitted volatileorganic compounds(BVOCs).We review the major laboratory and field findings with regard to effects of anthropogenicpollutants(NO_(x),anthropogenic aerosols,SO_(2),NH_(3))on biogenic SOA formation.NO_(x) participate in BVOC oxidationthrough changing the radical chemistry and oxidation capacity,leading to a complex SOA composition and yield sensitivitytowards NO_(x) level for different or even specific hydrocarbon precursors.Anthropogenic aerosols act as an importantintermedium for gas-particle partitioning and particle-phase reactions,processes of which are influenced by the particlephase state,acidity,water content and thus associated with biogenic SOA mass accumulation.SO_(2)modifies biogenic SOAformation mainly through sulfuric acid formation and accompanies new particle formation and acid-catalyzedheterogeneous reactions.Some new SO_(2)-involved mechanisms for organosulfate formation have also been proposed.NH_(3)/amines,as the most prevalent base species in the atmosphere,influence biogenic SOA composition and modify theoptical properties of SOA.The response of SOA formation behavior to these anthropogenic pollutants varies amongdifferent BVOCs precursors.Investigations on anthropogenic-biogenic interactions in some areas of China that aresimultaneously influenced by anthropogenic and biogenic emissions are summarized.Based on this review,somerecommendations are made for a more accurate assessment of controllable biogenic SOA formation and its contribution tothe total SOA budget.This study also highlights the importance of controlling anthropogenic pollutant emissions witheffective pollutant mitigation policies to reduce regional and global biogenic SOA formation. 展开更多
关键词 biogenic volatile organic compounds anthropogenic pollutants secondary organic aerosol anthropogenic-biogenic interactions China
下载PDF
Biogenic volatile organic compound emission patterns and secondary pollutant formation potentials of dominant greening trees in Chengdu,southwest China 被引量:2
14
作者 Liping Liu Barnabas C.Seyler +11 位作者 Hefan Liu Li Zhou Dongyang Chen Song Liu Chang Yan Fumo Yang Danlin Song Qinwen Tan Fengju Jia Cheng Feng Qiuwei Wang Yunchun Li 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第4期179-193,共15页
Integral to the urban ecosystem,greening trees provide many ecological benefits,but the active biogenic volatile organic compounds(BVOCs)they release contribute to the production of ozone and secondary organic aerosol... Integral to the urban ecosystem,greening trees provide many ecological benefits,but the active biogenic volatile organic compounds(BVOCs)they release contribute to the production of ozone and secondary organic aerosols,which harm ambient air quality.It is,therefore,necessary to understand the BVOC emission characteristics of dominant greening tree species and their relative contribution to secondary pollutants in various urban contexts.Consequently,this study utilized a dynamic enclosure system to collect BVOC samples of seven dominant greening tree species in urban Chengdu,Southwest China.Gas chromatography/mass spectrometry was used to analyze the BVOC components and standardized BVOC emission rates of each tree species were then calculated to assess their relative potential to form secondary pollutants.We found obvious differences in the composition of BVOCs emitted by each species.Ficus virens displayed a high isoprene emission rate at31.472μgC/(gdw(g dry weight)·hr),while Cinnamomum camphora emitted high volumes of D-Limonene at 93.574μgC/(gdw·hr).In terms of the BVOC emission rates by leaf area,C.camphora had the highest emission rate of total BVOCs at 13,782.59μgC/(m^(2)·hr),followed by Cedrus deodara with 5466.86μgC/(m^(2)·hr).Ginkgo biloba and Osmanthus fragrans mainly emitted oxygenated VOCs with lower overall emission rates.The high BVOC emitters like F.virens,C.camphora,and Magnolia grandiflora have high potential for significantly contributing to environmental secondary pollutants,so should be cautiously considered for future planting.This study provides important implications for improving urban greening efforts for subtropical Chinese urban contexts,like Chengdu. 展开更多
关键词 Biogenic volatile organic compounds(BVOCs) Dynamic enclosure system Emission characteristics Secondary pollutants
原文传递
解析北京郊区一次典型臭氧污染的物理化学过程
15
作者 贾龙 于姗杉 徐永福 《大气科学》 CSCD 北大核心 2024年第1期391-404,共14页
臭氧污染是我国当前面临的重要大气环境问题,其不仅取决于大气化学反应过程,而且会受大气物理过程和各气象要素的影响,因此需要从化学和物理两个方向来研究近地面臭氧污染问题。本研究结合外场观测和欧拉光化学模式,解析了2022年秋季北... 臭氧污染是我国当前面临的重要大气环境问题,其不仅取决于大气化学反应过程,而且会受大气物理过程和各气象要素的影响,因此需要从化学和物理两个方向来研究近地面臭氧污染问题。本研究结合外场观测和欧拉光化学模式,解析了2022年秋季北京怀柔城区的一次光化学污染周期内的物理和化学过程。给出了温度、湿度和风速等气象因子,以及臭氧及其前体物挥发性有机物(VOCs)和氮氧化物(NO_(x),x=1、2)在此期间的日变化特征。通过源解析得到VOCs主要来源为交通排放(46%)、植物源(25%)、溶剂挥发(23%)和燃烧源(9%)。通过欧拉光化学模式确定了区域传输和本地VOCs对臭氧的贡献,结果显示强北风天气条件下,怀柔区臭氧以外来水平输送为主(贡献超过70%);当以弱的南风或东南风为主时,天气处于稳定状态,臭氧主要来自VOCs和NO_(x)的二次转化。根据VOCs的臭氧潜势,在所有VOCs中对臭氧贡献最大的物质为烯烃,其贡献为67%,其次为芳香烃(16%)。通过敏感度分析,发现臭氧生成对物理因子中的光强、温度和边界层高度最敏感;在臭氧前体物中,活性较强的烯烃类物质的敏感度最高,烷烃最低。最后基于本地VOCs特征的EKMA曲线,提出了控制臭氧污染的减排策略。 展开更多
关键词 臭氧 挥发性有机物 源解析 敏感性分析 怀柔
下载PDF
Environmental impact and health risk assessment of volatile organic compound emissions during different seasons in Beijing 被引量:11
16
作者 Chuanqi Li Qianqian Li +5 位作者 Dongge Tong Qingliang Wang Mingge Wu Bohua Sun Guijin Su Li Tan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2020年第7期1-12,共12页
Volatile organic compounds(VOCs)are major contributors to air pollution.Based on the emission characteristics of 99 VOCs that daily measured at 10 am in winter from 15 December 2015 to 17 January 2016 and in summer fr... Volatile organic compounds(VOCs)are major contributors to air pollution.Based on the emission characteristics of 99 VOCs that daily measured at 10 am in winter from 15 December 2015 to 17 January 2016 and in summer from 21 July to 25 August 2016 in Beijing,the environmental impact and health risk of VOC were assessed.In the winter polluted days,the secondary organic aerosol formation potential(SOAP)of VOC(199.70±15.05 mg/m^3)was significantly higher than that on other days.And aromatics were the primary contributor(98.03%)to the SOAP during the observation period.Additionally,the result of the ozone formation potential(OFP)showed that ethylene contributed the most to OFP in winter(26.00%and 27.64%on the normal and polluted days).In summer,however,acetaldehyde was the primary contributor to OFP(22.00%and 21.61%on the normal and polluted days).Simultaneously,study showed that hazard ratios and lifetime cancer risk values of acrolein,chloroform,benzene,1,2-dichloroethane,acetaldehyde and 1,3-butadiene exceeded the thresholds established by USEPA,thereby presenting a health risk to the residents.Besides,the ratio of toluene-to-benzene indicated that vehicle exhausts were the main source of VOC pollution in Beijing.The ratio of m-/p-xylene-toethylbenzene demonstrated that there were more prominent atmospheric photochemical reactions in summer than that in winter.Finally,according to the potential source contribution function(PSCF)results,compared with local pollution sources,the spread of pollution from long-distance VOCs had a greater impact on Beijing. 展开更多
关键词 volatile organic compounds(VOCs) Secondary organic aerosol formation potential(SOAP) Ozone formation potential(OFP) Risk assessment Potential source contribution function(PSCF)
原文传递
上海西南某工业区夏季臭氧污染时期挥发性有机物特征及来源分析 被引量:1
17
作者 曹想 李跃武 +6 位作者 赵梦飞 易家林 陈喆 黄蓓佳 段玉森 修光利 段炼 《环境污染与防治》 CAS CSCD 北大核心 2024年第6期796-802,共7页
于2020年8月1—31日在上海金山区省界工业区附近设置观测点,对空气中104种挥发性有机物(VOCs)、氮氧化物(NO_(x))和臭氧(O_(3))水平进行观测。观测期间,O_(3)小时质量浓度为17~262μg/m^(3),平均值为83μg/m^(3),期间出现两次O_(3)污染... 于2020年8月1—31日在上海金山区省界工业区附近设置观测点,对空气中104种挥发性有机物(VOCs)、氮氧化物(NO_(x))和臭氧(O_(3))水平进行观测。观测期间,O_(3)小时质量浓度为17~262μg/m^(3),平均值为83μg/m^(3),期间出现两次O_(3)污染时段,O_(3)时均值分别为119、110μg/m^(3);观测期间总VOCs(TVOCs)体积分数为66.67×10^(-9),VOCs呈白天低、夜间高的变化趋势,各VOCs组分的日变化趋势与TVOCs一致;VOCs的总臭氧生成潜势(OFP)为578.85μg/m^(3),烯烃对OFP的贡献最大;源解析结果表明,两个污染时期的VOCs均与机动车尾气排放及涂料溶剂使用有关,应加强两个VOCs来源的管控;后向轨迹聚类分析表明,两污染时期VOCs高值气团均来自于海上,除周边城市的区域输送外,海上排放源也需加强关注。 展开更多
关键词 挥发性有机物 臭氧污染 臭氧生成潜势 源解析
下载PDF
聊城市秋冬季VOCs污染特征及来源解析 被引量:2
18
作者 黄同林 王艳辉 +6 位作者 王一秋 王亚晨 马江凯 张晓婷 宋小涵 孟静静 侯战方 《环境科学与技术》 CAS CSCD 北大核心 2024年第1期189-200,共12页
为深入了解聊城市秋冬季挥发性有机物(VOCs)的污染特征、来源及其对臭氧和二次有机气溶胶的生成潜势,作者使用在线监测系统分析了城区115种VOCs的体积分数。利用最大增量反应活性系数法和气溶胶生成系数法,计算了VOCs的臭氧生成潜势(OF... 为深入了解聊城市秋冬季挥发性有机物(VOCs)的污染特征、来源及其对臭氧和二次有机气溶胶的生成潜势,作者使用在线监测系统分析了城区115种VOCs的体积分数。利用最大增量反应活性系数法和气溶胶生成系数法,计算了VOCs的臭氧生成潜势(OFPs)和二次有机气溶胶的生成潜势(SOAFPs),并利用特征性比值法和正交矩阵因子模型(PMF)解析了大气VOCs的来源。结果表明:秋、冬季VOCs的化学组成相似,烷烃和OVOCs是体积浓度最高的2种组分。冬季OFPs为140.2×10^(-9),约是秋季(89.0×10^(-9))的1.6倍,OVOCs和C2~C4烯烃对秋、冬季VOCs的OFPs贡献最大(占54.7%~58.6%)。秋季(1.0μg/m^(3))与冬季(1.2μg/m^(3))生成的SOAFPs质量浓度水平相似,间/对-二甲苯、甲苯和邻-二甲苯是秋、冬季SOAFPs贡献最大的3种组分。甲苯/苯比值的分析结果表明,机动车尾气是聊城市大气VOCs的重要来源之一。PMF分析结果显示,秋季VOCs主要来自植物源和二次生成源(27.2%)、机动车尾气排放源(19.5%)、燃料燃烧源(18.5%)、溶剂使用源(17.5%)与工业源(17.3%);而冬季VOCs主要来源于汽油车尾气排放源(24.4%)、有机化工排放源(21.3%)、工业卤代烃源(20.8%)、柴油车尾气排放源(16.9%)与溶剂使用源(16.6%)。以上结果可为聊城市大气VOCs排放管控与空气质量改善提供重要的数据支持。 展开更多
关键词 挥发性有机物 臭氧生成潜势 二次有机气溶胶生成潜势 来源解析 聊城市
下载PDF
焦化污染区春季VOCs的污染特征及其控制策略 被引量:1
19
作者 李宏艳 张琰茹 +8 位作者 付国 黄时丹 李宏宇 崔阳 高雪莹 何秋生 白京霭 张国忠 温彪 《中国环境科学》 EI CAS CSCD 北大核心 2024年第3期1234-1243,共10页
在对介休焦化区和方山对照区春季大气挥发性有机化合物(VOCs)污染特征进行分析的基础上,利用等效丙烯浓度(PEC)法和最大增量反应活性(MIR)法量化了VOCs的臭氧生成潜势(OFP),利用分数气溶胶生成系数(FAC)法和二次有机气溶胶(SOAP)法计算... 在对介休焦化区和方山对照区春季大气挥发性有机化合物(VOCs)污染特征进行分析的基础上,利用等效丙烯浓度(PEC)法和最大增量反应活性(MIR)法量化了VOCs的臭氧生成潜势(OFP),利用分数气溶胶生成系数(FAC)法和二次有机气溶胶(SOAP)法计算了VOCs的二次有机气溶胶生成潜势(SOAFP),采用健康风险评价法对可能会威胁人体健康的VOCs组分进行了风险评估.在此基础上,结合熵值法和正定矩阵因子(PMF)源解析模型对VOCs的优先控制物种和优先控制污染源进行了判别.结果表明,介休焦化区VOCs污染严重,总VOCs(TVOCs)浓度是方山的2.7倍.介休焦化区VOCs组成具有明显的烷烃占比低而芳香烃和烯烃占比高的特点.介休的OFP、SOAFP与健康风险都远高于方山,分别是方山的3.0、8.9和8.8倍,对介休OFP、SOAFP和健康风险影响最大的物种分别为乙烯、甲苯和苯,削减烯烃和芳香烃的排放是控制介休二次生成与健康风险的有效途径.焦化源(32.4%)是介休VOCs的主要来源,其次为汽油型尾气源(29.0%)和溶剂使用源(16.9%),其中焦化源是介休一级控制污染物苯和乙烯的主要来源,贡献高达74.1%和98.9%,汽油型尾气源(52.0%)和溶剂使用源(31.3%)是一级控制污染物甲苯的主要来源. 展开更多
关键词 VOCS 焦化污染 熵值法 二次生成 健康风险 源解析
下载PDF
成都市餐饮源VOCs排放特征 被引量:1
20
作者 胡秋萍 费怡 +5 位作者 陈耀 周子航 张雷 杨亮 王斌 陈茁 《环境化学》 CAS CSCD 北大核心 2024年第2期600-613,共14页
为研究成都市餐饮源VOCs排放特征,建立成都市餐饮源114种VOCs成分谱,本研究选择11个监测对象进行VOCs组分分析,并探索餐饮源VOCs全组分特征.结果表明,餐饮源VOCs中烷烃占比为23.12%—30.29%,烯烃占比为8.61%—25.78%,芳香烃占比为0.16%... 为研究成都市餐饮源VOCs排放特征,建立成都市餐饮源114种VOCs成分谱,本研究选择11个监测对象进行VOCs组分分析,并探索餐饮源VOCs全组分特征.结果表明,餐饮源VOCs中烷烃占比为23.12%—30.29%,烯烃占比为8.61%—25.78%,芳香烃占比为0.16%—5.86%,卤代烃占比为0.86%—13.82%,OVOCs占比为28.02%—63.77%,其他占比为2.02%—8.26%.OVOCs、烷烃和烯烃3类占比最高,3类污染物累计质量浓度百分比在75%以上,是餐饮源重要的污染物类型.餐饮源排名前10的VOCs分别是丙烯醛(11.12%)、乙烷(9.87%)、乙醛(9.51%)、丙酮(9.34%)、乙烯(7.86%)、正戊烷(5.74%)、乙炔(5.01%)、丁二烯(4.64%)、顺式-1,3-二氯-1-丙烯(3.40%)和乙酸乙酯(3.04%),是餐饮源的特征污染物.餐饮源全组分分析得到OVOCs的代表性物质为反式茴香脑和芳樟醇等,烯烃代表性物质为长叶烯和柠檬烯等,烷烃代表性物质为正十五烷和正庚烷等,为完善餐饮源成分谱物种、探寻餐饮源特征污染物的研究提供参考.采用FAC法计算餐饮源VOCs二次有机气溶胶生成潜势.餐饮源SOA生成潜势为1220.7μg·m^(-3),芳香烃SOA生成潜势贡献率为93.1%,烷烃SOA生成潜势贡献率为6.9%. 展开更多
关键词 餐饮源 成分谱 挥发性有机物(VOCs) 成都市
下载PDF
上一页 1 2 46 下一页 到第
使用帮助 返回顶部