Volatile organic compounds are a kind of important indoor and outdoor air pollutants.In recent years,more and more attention has been paid to the ways of volatile organic compound elimination because of its potential ...Volatile organic compounds are a kind of important indoor and outdoor air pollutants.In recent years,more and more attention has been paid to the ways of volatile organic compound elimination because of its potential long-term effects on human health.Among the various available methods for volatile organic compound elimination,the catalytic combustion is the most attractive method due to its high efficiency,low cost,simple operation,and easy scale-up.Perovskite oxides,as a large family of metal oxides with their A-site mainly of lanthanide element and/or alkaline earth metal element and B-site of transition metal element,have been extensively investigated as active and stable catalysts for volatile organic compound removal reactions due to their abundant compositional elements,high thermal/chemical stability,and compositional/structural flexibility.The catalytic performance of perovskite oxides is strongly depended on its material composition,morphology,and surface/bulk properties,while the doping,tailored synthesis route,and composite construction may have a significant effect on the bulk(oxygen vacancy concentration,lattice structure),surface(oxygen species,defect)properties,and particulate morphology,consequently the catalytic activity and stability for volatile organic compound removal.Herein,a comprehensive review about the recent advances in perovskite oxides for volatile organic compound elimination reactions based on catalytic combustion is presented from different aspects with a special emphasis on the material design strategies,such as compositional tuning,morphology control,nanostructure building,hybrid construction,and surface modification.At last,some perspectives are presented on the development and design of perovskite oxide-based catalysts for volatile organic compound removal applications by highlighgting the critical issues and challenges.展开更多
Volatile organic compounds(VOCs) are a major component in air pollutants and pose great risks to both human health and environmental protection. Currently, VOC abatement in industrial applications is through the use...Volatile organic compounds(VOCs) are a major component in air pollutants and pose great risks to both human health and environmental protection. Currently, VOC abatement in industrial applications is through the use of activated carbons as adsorbents and oxide-supported metals as catalysts. Notably, activated carbons easily adsorb water, which strongly hinders the adsorption of VOCs; conventional oxides typically possess relatively low surface areas and random pores, which effectively influence the catalytic conversion of VOCs. Zeolites, in contrast with activated carbons and oxides, can be designed to have very uniform and controllable micropores, in addition to tailored wettability properties, which can favor the selective adsorption of VOCs. In particular, zeolites with selective adsorptive properties when combined with catalytically active metals result in zeolite-supported metals exhibiting significantly improved performance in the catalytic combustion of VOCs compared with conventional oxide-supported catalysts. In this review, recent developments on VOC abatement by adsorptive and catalytic techniques over zeolite-based materials have been briefly summarized.展开更多
Most of volatile organic compounds (VOCs) are harmful to the atmosphere and human health. Cata‐lytic combustion is an effective way to eliminate VOCs. The key issue is the availability of high per‐formance catalys...Most of volatile organic compounds (VOCs) are harmful to the atmosphere and human health. Cata‐lytic combustion is an effective way to eliminate VOCs. The key issue is the availability of high per‐formance catalysts. Many catalysts including transition metal oxides, mixed metal oxides, and sup‐ported noble metals have been developed. Among these catalysts, the porous ones attract much attention. In this review, we focus on recent advances in the synthesis of ordered mesoporous and macroporous transition metal oxides, perovskites, and supported noble metal catalysts and their catalytic oxidation of VOCs. The porous catalysts outperformed their bulk counterparts. This excel‐lent catalytic performance was due to their high surface areas, high concentration of adsorbed oxy‐gen species, low temperature reducibility, strong interaction between noble metal and support and highly dispersed noble metal nanoparticles and unique porous structures. Catalytic oxidation of carbon monoxide over typical catalysts was also discussed. We made conclusive remarks and pro‐posed future work for the removal of VOCs.展开更多
This paper presents a comprehensive overview of various advanced technologies employed in the treatment of volatile organic compounds(VOCs),which are crucial pollutants in industrial emissions.The study explores diffe...This paper presents a comprehensive overview of various advanced technologies employed in the treatment of volatile organic compounds(VOCs),which are crucial pollutants in industrial emissions.The study explores different methods,including direct combustion,thermal combustion,catalytic combustion,low-temperature plasma purification,photocatalytic purification,membrane separation,and adsorption methods.Each technology is critically analyzed for its operational principles,efficiency,and applicability under different conditions.Special attention is given to adsorption concentration and catalytic combustion parallel method,highlighting its efficiency in treating low-concentration,high-volume VOC emissions.The paper also delves into the advantages and limitations of each method,providing insights into their effectiveness in various industrial scenarios.The study aims to offer a detailed guide for selecting appropriate VOC treatment technologies,contributing to enhanced environmental protection and sustainable industrial practices.展开更多
Emissions of volatile organic compounds (VOCs) and carbonyls from residential coal combustion of five coals with different maturities were studied in a simulated room.The coals were burned in form of honeycomb briqu...Emissions of volatile organic compounds (VOCs) and carbonyls from residential coal combustion of five coals with different maturities were studied in a simulated room.The coals were burned in form of honeycomb briquettes in a domestic coal stove,one of the most common fuel/stove combinations in China.Through a dilution system,VOCs and carbonyls samples were collected by canisters and silica-gel cartridges and analyzed by gas chromatography and mass spectrum (GC/MS) and high performance liquid chromatography/ultraviolet (HPLC/UV),respectively.The results show that the bituminous coals with medium volatile matter content produce the highest emissions while the anthracite yields the lowest.Among the identified carbonyls from the coal smoke,the aromatic compounds (benzaldehyde,2,5-dimethylbenzaldehyde and p-tolualdehyde,m/o-tolualdehyde,benzene,m,p-xylene and trimethyl-benzene) were relatively abundant,which might be due to the molecular structure of the coal.For formaldehyde,aromatic carbonyls and aliphatic alkanes,their concentrations increase up to the maximum values and then decrease with increasing coal maturity.The total carbonyls and VOCs have the same tendency,which was observed for the emission factors of organic carbon (OC),elemental carbon (EC),particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) detected in the series study.展开更多
Ce0.6Mn0.4O2 catalysts with different sources of manganese and Ce0.6-xZrxMn0.4O2 mixed oxide catalysts were prepared by coprecipitation method and were characterized by N2 adsorption-desorption,TPR,XRD,and XPS techniq...Ce0.6Mn0.4O2 catalysts with different sources of manganese and Ce0.6-xZrxMn0.4O2 mixed oxide catalysts were prepared by coprecipitation method and were characterized by N2 adsorption-desorption,TPR,XRD,and XPS techniques.The activities of the prepared catalysts for ethyl acetate combustion,and the effects of calcination temperature and space velocity on catalytic activity were investigated.The results showed that partial replacement of Mn(NO3)2 with KMnO4 as sources of manganese could improve activities of catalysts.Ce0.45Zr0.15Mn0.4O2 catalyst exhibited the best catalytic activity and high thermal stability,e.g.,T90 could be still below 210℃ even if space velocity was up to 20000h-1.展开更多
With the rapid development of industry,volatile organic compounds(VOCs)are gaining attention as a class of pollutants that need to be eliminated due to their adverse effects on the environment and human health.Catalyt...With the rapid development of industry,volatile organic compounds(VOCs)are gaining attention as a class of pollutants that need to be eliminated due to their adverse effects on the environment and human health.Catalytic combustion is the most popular technology used for the removal of VOCs as it can be adapted to different organic emissions under mild conditions.This review first introduces the hazards of VOCs,their treatment technologies,and summarizes the treatment mechanism issues.Next,the characteristics and catalytic performance of perovskite oxides as catalysts for VOC removal are expounded,with a special focus on lattice distortions and surface defects caused by metal doping and surface modifications,and on the treatment of different VOCs.The challenges and the prospects regarding the design of perovskite oxides catalysts for the catalytic combustion of VOCs are also discussed.This review provides a reference base for improving the performance of perovskite catalysts to treat VOCs.展开更多
The catalytic oxidation of volatile organic compounds(VOCs)is considered a feasible method for VOCs treatment by virtue of its low technical cost,high economic efficiency,and low additionally produced pollutants,which...The catalytic oxidation of volatile organic compounds(VOCs)is considered a feasible method for VOCs treatment by virtue of its low technical cost,high economic efficiency,and low additionally produced pollutants,which is of important social value.Singleatom catalysts(SACs)with 100%atom utilization and uniform active sites usually have high activity and high product selectivity,and promise a broad range of applications.Precise regulation of the microstructures of SACs by means of defect engineering,interface engineering,and electronic effects can further improve the catalytic performance of VOCs oxidation.In this review,we introduce the mechanisms of VOCs oxidation,and systematically summarize the recent research progress of SACs in catalytic VOCs total oxidation into CO_(2)and H_(2)O,and then discuss the effects of various structural regulation strategies on the catalytic performance.Finally,we summarize the current problems yet to be solved and challenges currently faced in this field,and propose future design and research ideas for SACs in catalytic oxidation of VOCs.展开更多
Two novel washcoats Ce0.8Zr0.15La0.05Oδ and Ce0.8Zr0.2O2 was prepared by an impregnation method, which acted as a host for the active Pd component to prepare Pd/Ce0.8Zr0.15La0.05Oδ/substrate and Pd/Ce0.8Zr0.2O2/subs...Two novel washcoats Ce0.8Zr0.15La0.05Oδ and Ce0.8Zr0.2O2 was prepared by an impregnation method, which acted as a host for the active Pd component to prepare Pd/Ce0.8Zr0.15La0.05Oδ/substrate and Pd/Ce0.8Zr0.2O2/substrate monolithic catalysts for toluene combustion. The washcoats was characterized by X-ray diffraction (XRD), Raman spectroscopy, Brunauner-Emmett-Teller (BET), and H2-temperature-programmed reduction (H2-TPR). The result indicated that both the washcoats had strong vibration-shock resistance according to ultrasonic test. Doping La3+ into CeO2-ZrO2 solid solution could generate more oxygen vacancies, and could inhibit the sinter of CeO2-ZrO2 solid solution when calcined at high temperatures (800, 900 and 1000 °C). The washcoat Ce0.8Zr0.15La0.05Oδ had much better redox properties. The reductive temperature of Ce4+ species shifted to low temperature by 60 °C when the washcoats calcined at high temperatures (800, 900 and 1000 °C). The Pd/Ce0.8Zr0.15La0.05Oδ/substrate monolithic catalyst calcination at 500 °C had the best catalytic activity and the 95% toluene conversion at a temperature as low as 190 °C. When calcined at low temperature (500 and 700 °C), the catalytic activity has little improvement, however, when calcined at high temperature, the catalytic activity of Pd/Ce0.8Zr0.15La0.05Oδ/substrate monolithic catalysts had significant improvement. As catalyst washcoat, the Ce0.8Zr0.15La0.05Oδ had better thermal stability than the washcoat Ce0.8Zr0.2O2, the developed Pd/Ce0.8Zr0.15La0.05Oδ/ substrate monolithic catalyst in this work was promising for eliminating Volatile organic compounds.展开更多
CuOγ-Al2O3 catalysts were prepared by plasma treatment and conventional impregnation methods. The catalytic combustion of two kinds of volatile organic compounds (VOCs), toluene and benzene, were carried out over the...CuOγ-Al2O3 catalysts were prepared by plasma treatment and conventional impregnation methods. The catalytic combustion of two kinds of volatile organic compounds (VOCs), toluene and benzene, were carried out over these CuOγ-Al2O3 catalysts. The surface properties of these catalysts were characterized by X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The experimental results showed that in catalytic combustion the activity of the CuOγ-Al2O3 catalyst prepared via plasma was much higher than that of the CuOγ-Al2O3 catalyst prepared by conventional impregnation method. XRD results showed that an enhanced dispersion had been achieved with the plasma treatment. SEM results indicated that the size became much smaller and the surface became more uniform with the plasma treatment.展开更多
Volatile organic compounds(VOCs)have become one of the most serious threats to human health and eco-environment due to their volatility,toxicity and diffusivity,etc.Catalytic completely oxidation had been regarded as ...Volatile organic compounds(VOCs)have become one of the most serious threats to human health and eco-environment due to their volatility,toxicity and diffusivity,etc.Catalytic completely oxidation had been regarded as a highly efficient strategy for the VOCs abatement.Metal or metal oxides supported on zeolite have been considered as superior catalysts for the treatment of VOCs.Among them,Beta zeolites have attracted many attentions due to their unique structure and consequently catalytic properties in the oxidation of VOCs.The progresses and developments made in the understanding and design of Beta zeolites-based catalysts in the completely oxidation of VOCs in the past two decades have been systematically summarized in this review.展开更多
α-MnO2 nanotubes and their supported Au-Pd alloy nanocatalysts were prepared using hydrothermal and polyvinyl alcohol-protected reduction methods, respectively. Their catalytic activity for the oxidation of toluene/m...α-MnO2 nanotubes and their supported Au-Pd alloy nanocatalysts were prepared using hydrothermal and polyvinyl alcohol-protected reduction methods, respectively. Their catalytic activity for the oxidation of toluene/m-xylene, acetone/ethyl acetate, acetone/m-xylene and ethyl acetate/m-xylene mixtures was evaluated. It was found that the interaction between Au-Pd alloy nanoparticles and α-MnO2 nanotubes significantly improved the reactivity of lattice oxygen, and the 0.91 wt.% Au0.48 Pd/α-MnO2 nanotube catalyst outperformed the α-MnO2 nanotube catalyst in the oxidation of toluene, m-xylene, ethyl acetate and acetone. Over the0.91 wt.% Au0.48 Pd/α-MnO2 nanotube catalyst,(i) toluene oxidation was greatly inhibited in the toluene/m-xylene mixture, while m-xylene oxidation was not influenced;(ii) acetone and ethyl acetate oxidation suffered a minor impact in the acetone/ethyl acetate mixture; and(iii) m-xylene oxidation was enhanced whereas the oxidation of the oxygenated VOCs(volatile organic compounds) was suppressed in the acetone/m-xylene or ethyl acetate/m-xylene mixtures. The competitive adsorption of these typical VOCs on the catalyst surface induced an inhibitive effect on their oxidation, and increasing the temperature favored the oxidation of the VOCs. The mixed VOCs could be completely oxidized into CO2 and H2 O below 320°C at a space velocity of 40,000 m L/(g·hr). The 0.91 wt.% Au0.48 Pd/α-MnO2 nanotube catalyst exhibited high catalytic stability as well as good tolerance to water vapor and CO2 in the oxidation of the VOC mixtures. Thus, the α-MnO2 nanotube-supported noble metal alloy catalysts hold promise for the efficient elimination of VOC mixtures.展开更多
Using the molten salt and polyvinyl alcohol-protected reduction method,we fabricated Co3O4 octahedron-supported Au-Pd(x(AuPdy)/Co3O4;x =(0.18,0.47,and 0.96) wt%;y(Pd/Au molar ratio) =1.85-1.97) nanocatalysts.T...Using the molten salt and polyvinyl alcohol-protected reduction method,we fabricated Co3O4 octahedron-supported Au-Pd(x(AuPdy)/Co3O4;x =(0.18,0.47,and 0.96) wt%;y(Pd/Au molar ratio) =1.85-1.97) nanocatalysts.The molten salt-derived Co3O4 sample possessed well-defined octahedral morphology,with an edge length of 300 nm.The Au-Pd nanoparticles,with sizes of 2.7-3.2 nm,were uniformly dispersed on the surface of Co3O4.The 0.96(AuPd1.92)/Co3O4 sample showed the highest catalytic activity for toluene and o-xylene oxidation,and the temperature required for achieving 90%conversion of toluene and o-xylene was 180 and 187 ℃,respectively,at a space velocity of 40000 mL/(g·h).The high catalytic performance of Co3O4 octahedron-supported Au-Pd nanocatalysts was associated with the interaction between Au-Pd nanoparticles and Co3O4 and high concentration of adsorbed oxygen species.展开更多
Ruthenium (Ru)‐based catalysts are widely employed in several types of gas‐solid reactions because of their high catalytic activities. This review provides theoretical research on Ru‐based catalysts and an analys...Ruthenium (Ru)‐based catalysts are widely employed in several types of gas‐solid reactions because of their high catalytic activities. This review provides theoretical research on Ru‐based catalysts and an analysis of their basic properties and oxidation behavior. There is particular emphasis on Ru‐catalyzed gas‐solid catalytic reactions, including the catalytic oxidation of VOCs, preferential oxidation of CO, synthesis of ammonia, oxidation of HCl and partial oxidation of CH4. Recent litera‐ture on catalysis is summarized and compared. Finally, we describe current challenges in the field and propose approaches for future development of Ru‐based catalysts.展开更多
Emission of volatile organic compounds has important influence on complex air pollution and human health.In this paper,a series of tungsten-iron composite oxides with different proportions and preparation methods were...Emission of volatile organic compounds has important influence on complex air pollution and human health.In this paper,a series of tungsten-iron composite oxides with different proportions and preparation methods were synthesized and first used for catalytic combustion of chlorobenzene and toluene,as typical polluting gas sources.These WO_(3)-based solid catalytic materials were systematically characterized by modern analytical methods,and the results showed that there was strong electron interaction between W and Fe elements in the composite oxides,and the presence of a certain amount of tungsten oxide inhibited the crystallization of iron oxide,and vice versa,which were beneficial to the uniform dispersion of tungsten-iron components into each other and the improvement of redox properties.Compared with single-component oxide,the formation of tungsten-iron composite oxide affected the micro-structure,improved the specific surface area and optimized the pore structure of materials.The performance test results showed that the tungsten-iron composite oxide(FeWO_4-0.5 Fe_(2)O_(3),molar ratio of tungsten and iron was 1/2)prepared using citric acid-based sol-gel method was the optimal,and its catalytic degradation efficiency could reach 90%for chlorobenzene and 83%for toluene at 320℃,and maintain at least 60 h without obvious deactivation,with high selectivity to the formation of HCl and CO_(2).展开更多
In this study,a novel three-dimensional(3D)-OMm-Co_(3)O_(4)/SiO_(2)-0.5AP(OMm=ordered macro–meso porous,AP=aluminum phosphate)monolithic catalyst was for the first time constructed successfully with the hierarchical ...In this study,a novel three-dimensional(3D)-OMm-Co_(3)O_(4)/SiO_(2)-0.5AP(OMm=ordered macro–meso porous,AP=aluminum phosphate)monolithic catalyst was for the first time constructed successfully with the hierarchical Co-phyllosilicate ultrathin nanosheets growth on the surface of 3D printed ordered macropore–mesoporous SiO_(2)support.On the one hand,we discovered that the construction of ordered macropore–mesoporous structures is beneficial to the diffusion and adsorption of reactants,intermediates,and products.On the other hand,the formation of hierarchical Co-phyllosilicate ultrathin nanosheets could provide more active Co&+species,abundant acid sites,and active oxygen.The above factors are in favor of improving the catalytic performance of benzene oxidation,and then a 3D-OMm-Co_(3)O_(4)/SiO_(2)-0.5AP catalyst exhibited the superior catalytic activity.To explore the effect of catalysts structure and morphology,various Co-based catalysts were also constructed.Simultaneously,the 3D-OMm-Co_(3)O_(4)/SiO_(2)-0.5AP catalyst has excellent catalytic performance,water resistance,and thermal stability in the catalytic combustion of benzene due to the strong interactions between Co&+species and SiO_(2)in the phyllosilicate.Therefore,this study proposes a new catalyst synthesis method through 3D printing,and presents considerable prospects for the removal of VOCs from industrial applications.展开更多
CeO_(2),La_(2)O_(3),and CeO_(2)-Y_(2)O_(3) oxides were coated on the surface of spherical granular AI_(2)O_(3)(3-5 mm)through impregnation method,and proved as better supports of Pd and Pt catalysts.The influences of ...CeO_(2),La_(2)O_(3),and CeO_(2)-Y_(2)O_(3) oxides were coated on the surface of spherical granular AI_(2)O_(3)(3-5 mm)through impregnation method,and proved as better supports of Pd and Pt catalysts.The influences of rare earth metal doping on the adsorption rates of Pd and Pt ions,as well as the catalytic performance,were investigated.Results show that the H_(2)PtCl_(6)·6H_(2)O adsorption rates of the Al_(2)O_(3) carriers modified by Ce,La,and CeY increase significantly.These rare earth coatings can adsorb almost all H2PtCl_(6)·6H_(2)O in the solution.Compared with Pt/Al_(2)O_(3) catalyst,Pt/Ce-AI_(2)O_(3) and Pt/CeY-AI_(2)O_(3) catalysts have better degradation performance for toluene,and the T_(90) temperatures are both about 147℃.According to X-ray photoelectron spectroscopy(XPS)characterization,Pt^(0)is an important active species for catalytic oxidation reaction of toluene.After CeO_(2)modification to the conventional Pt/Al_(2)O_(3)catalyst,the proportion of Pt^(0)increases from 74.5%to 82.1%.When the Pt^(0)content in the metal state is improved,the redox activity of the catalyst is promoted correspondingly.展开更多
A Ce0.4Zr0.6O2 washcoat was prepared using an impregnation method, which acted as a host for the active Pd component to prepare a Pd-Ce0.4Zr0.6O2/substrate monolithic catalyst for toluene combustion. The catalyst was ...A Ce0.4Zr0.6O2 washcoat was prepared using an impregnation method, which acted as a host for the active Pd component to prepare a Pd-Ce0.4Zr0.6O2/substrate monolithic catalyst for toluene combustion. The catalyst was characterized by scanning electron microscopy (SEM), Raman spectroscopy, Brunauner-Emmett-Teller (BET), and carbon monoxide tonperature-programmed reduction (CO-TPR). It was found that the washcoat had strong vibration-shock resistance according to an ultrasonic test. The Pd-Ce0.4Zr0.6O2/substrate monolithic catalyst calcined at 400 ℃ showed 95% toluene conversion at a temperature as low as 210 ℃. Furthermore, the lowest temperature for 95% toluene conversion was increased by 40℃ after the catalyst calcined at 900℃, indicating that the catalyst had good thermal stability. The results revealed that the developed catalyst in this study was promising for eliminating volatile organic compounds (VOCs).展开更多
基金supported by the National Natural Science Foundation of China(Project No.21908106 and 21878158)the Jiangsu Natural Science Foundation(Project No.BK20190682)+2 种基金the Program for Jiangsu Specially Appointed Professorsthe Funding from State Key Laboratory of Materials-Oriented Chemical Engineering(Project No.ZK201808)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Volatile organic compounds are a kind of important indoor and outdoor air pollutants.In recent years,more and more attention has been paid to the ways of volatile organic compound elimination because of its potential long-term effects on human health.Among the various available methods for volatile organic compound elimination,the catalytic combustion is the most attractive method due to its high efficiency,low cost,simple operation,and easy scale-up.Perovskite oxides,as a large family of metal oxides with their A-site mainly of lanthanide element and/or alkaline earth metal element and B-site of transition metal element,have been extensively investigated as active and stable catalysts for volatile organic compound removal reactions due to their abundant compositional elements,high thermal/chemical stability,and compositional/structural flexibility.The catalytic performance of perovskite oxides is strongly depended on its material composition,morphology,and surface/bulk properties,while the doping,tailored synthesis route,and composite construction may have a significant effect on the bulk(oxygen vacancy concentration,lattice structure),surface(oxygen species,defect)properties,and particulate morphology,consequently the catalytic activity and stability for volatile organic compound removal.Herein,a comprehensive review about the recent advances in perovskite oxides for volatile organic compound elimination reactions based on catalytic combustion is presented from different aspects with a special emphasis on the material design strategies,such as compositional tuning,morphology control,nanostructure building,hybrid construction,and surface modification.At last,some perspectives are presented on the development and design of perovskite oxide-based catalysts for volatile organic compound removal applications by highlighgting the critical issues and challenges.
基金supported by the Fundamental Research Funds for the Central Universities(2015XZZX004-04)Zhejiang Provincial Natural Science Foundation(LR15B030001)~~
文摘Volatile organic compounds(VOCs) are a major component in air pollutants and pose great risks to both human health and environmental protection. Currently, VOC abatement in industrial applications is through the use of activated carbons as adsorbents and oxide-supported metals as catalysts. Notably, activated carbons easily adsorb water, which strongly hinders the adsorption of VOCs; conventional oxides typically possess relatively low surface areas and random pores, which effectively influence the catalytic conversion of VOCs. Zeolites, in contrast with activated carbons and oxides, can be designed to have very uniform and controllable micropores, in addition to tailored wettability properties, which can favor the selective adsorption of VOCs. In particular, zeolites with selective adsorptive properties when combined with catalytically active metals result in zeolite-supported metals exhibiting significantly improved performance in the catalytic combustion of VOCs compared with conventional oxide-supported catalysts. In this review, recent developments on VOC abatement by adsorptive and catalytic techniques over zeolite-based materials have been briefly summarized.
基金supported by the National High Technology Research and Development Program (863 Program,2015AA034603)the National Natural Science Foundation of China (21377008,201077007,20973017)+1 种基金Foundation on the Creative Research Team Construction Promotion Project of Beijing Municipal InstitutionsScientific Research Base Construction-Science and Technology Creation Platform National Materials Research Base Construction~~
文摘Most of volatile organic compounds (VOCs) are harmful to the atmosphere and human health. Cata‐lytic combustion is an effective way to eliminate VOCs. The key issue is the availability of high per‐formance catalysts. Many catalysts including transition metal oxides, mixed metal oxides, and sup‐ported noble metals have been developed. Among these catalysts, the porous ones attract much attention. In this review, we focus on recent advances in the synthesis of ordered mesoporous and macroporous transition metal oxides, perovskites, and supported noble metal catalysts and their catalytic oxidation of VOCs. The porous catalysts outperformed their bulk counterparts. This excel‐lent catalytic performance was due to their high surface areas, high concentration of adsorbed oxy‐gen species, low temperature reducibility, strong interaction between noble metal and support and highly dispersed noble metal nanoparticles and unique porous structures. Catalytic oxidation of carbon monoxide over typical catalysts was also discussed. We made conclusive remarks and pro‐posed future work for the removal of VOCs.
文摘This paper presents a comprehensive overview of various advanced technologies employed in the treatment of volatile organic compounds(VOCs),which are crucial pollutants in industrial emissions.The study explores different methods,including direct combustion,thermal combustion,catalytic combustion,low-temperature plasma purification,photocatalytic purification,membrane separation,and adsorption methods.Each technology is critically analyzed for its operational principles,efficiency,and applicability under different conditions.Special attention is given to adsorption concentration and catalytic combustion parallel method,highlighting its efficiency in treating low-concentration,high-volume VOC emissions.The paper also delves into the advantages and limitations of each method,providing insights into their effectiveness in various industrial scenarios.The study aims to offer a detailed guide for selecting appropriate VOC treatment technologies,contributing to enhanced environmental protection and sustainable industrial practices.
基金supported by the National Natural Science Foundation of China (Grant Nos.40773047,40605033 and 40973071)the Shanghai Leading Academic Discipline Project (Grant No.S30109)the Earmarked Foundation of the State Key Laboratory of Organic Geochemistry (Grant No.OGL-200705)
文摘Emissions of volatile organic compounds (VOCs) and carbonyls from residential coal combustion of five coals with different maturities were studied in a simulated room.The coals were burned in form of honeycomb briquettes in a domestic coal stove,one of the most common fuel/stove combinations in China.Through a dilution system,VOCs and carbonyls samples were collected by canisters and silica-gel cartridges and analyzed by gas chromatography and mass spectrum (GC/MS) and high performance liquid chromatography/ultraviolet (HPLC/UV),respectively.The results show that the bituminous coals with medium volatile matter content produce the highest emissions while the anthracite yields the lowest.Among the identified carbonyls from the coal smoke,the aromatic compounds (benzaldehyde,2,5-dimethylbenzaldehyde and p-tolualdehyde,m/o-tolualdehyde,benzene,m,p-xylene and trimethyl-benzene) were relatively abundant,which might be due to the molecular structure of the coal.For formaldehyde,aromatic carbonyls and aliphatic alkanes,their concentrations increase up to the maximum values and then decrease with increasing coal maturity.The total carbonyls and VOCs have the same tendency,which was observed for the emission factors of organic carbon (OC),elemental carbon (EC),particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) detected in the series study.
基金supported by the National Natural Science Foundation of China (No. 20773090)the National High Technology Research and Development Program of China (863 Program,No. 2006AA06Z347)the Youth Fund of Sichuan University (No. 2008119)
文摘Ce0.6Mn0.4O2 catalysts with different sources of manganese and Ce0.6-xZrxMn0.4O2 mixed oxide catalysts were prepared by coprecipitation method and were characterized by N2 adsorption-desorption,TPR,XRD,and XPS techniques.The activities of the prepared catalysts for ethyl acetate combustion,and the effects of calcination temperature and space velocity on catalytic activity were investigated.The results showed that partial replacement of Mn(NO3)2 with KMnO4 as sources of manganese could improve activities of catalysts.Ce0.45Zr0.15Mn0.4O2 catalyst exhibited the best catalytic activity and high thermal stability,e.g.,T90 could be still below 210℃ even if space velocity was up to 20000h-1.
基金the following organisations is gratefully acknowledged:the National Natural Science Foundation of China(Grant Nos.21976141,22102123,42277485)the Department of Science and Technology of Hubei Province(Grant No.2021CFA034)+3 种基金the Department of Education of Hubei Province(Grant Nos.T2020011,Q20211712)the Opening Project of Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing&Finishing(Grant No.STRZ202101)and the South Africa National Research Foundation(No.137947)SACC acknowledges Fundação para a Ciência e a Tecnologia(FCT),Portugal for Scientific Employment Stimulus-Institutional Call(Grant No.CEECINST/00102/2018)Associate Laboratory for Green Chemistry-LAQV financed by national funds from FCT/MCTES(Grant Nos.UIDB/50006/2020 and UIDP/5006/2020).
文摘With the rapid development of industry,volatile organic compounds(VOCs)are gaining attention as a class of pollutants that need to be eliminated due to their adverse effects on the environment and human health.Catalytic combustion is the most popular technology used for the removal of VOCs as it can be adapted to different organic emissions under mild conditions.This review first introduces the hazards of VOCs,their treatment technologies,and summarizes the treatment mechanism issues.Next,the characteristics and catalytic performance of perovskite oxides as catalysts for VOC removal are expounded,with a special focus on lattice distortions and surface defects caused by metal doping and surface modifications,and on the treatment of different VOCs.The challenges and the prospects regarding the design of perovskite oxides catalysts for the catalytic combustion of VOCs are also discussed.This review provides a reference base for improving the performance of perovskite catalysts to treat VOCs.
基金supported by National Natural Science Foundation of China(No.22108306)Taishan Scholars Program of Shandong Province(No.tsqn201909065)+4 种基金Shandong Provincial Natural Science Foundation(Nos.ZR2021YQ15,ZR2020QB174)Fundamental Research Funds for the Central Universities(No.22CX07009A)Hefei National Research Center for Physical Sciences at the Microscale(No.KF2021107)State Key Laboratory of Materials-Oriented Chemical Engineering(No.KL20-09)PetroChina Innovation Foundation(No.2019D-5007-0401).
文摘The catalytic oxidation of volatile organic compounds(VOCs)is considered a feasible method for VOCs treatment by virtue of its low technical cost,high economic efficiency,and low additionally produced pollutants,which is of important social value.Singleatom catalysts(SACs)with 100%atom utilization and uniform active sites usually have high activity and high product selectivity,and promise a broad range of applications.Precise regulation of the microstructures of SACs by means of defect engineering,interface engineering,and electronic effects can further improve the catalytic performance of VOCs oxidation.In this review,we introduce the mechanisms of VOCs oxidation,and systematically summarize the recent research progress of SACs in catalytic VOCs total oxidation into CO_(2)and H_(2)O,and then discuss the effects of various structural regulation strategies on the catalytic performance.Finally,we summarize the current problems yet to be solved and challenges currently faced in this field,and propose future design and research ideas for SACs in catalytic oxidation of VOCs.
基金Project supported by Zhejiang Provincial Natural Science Foundation of China (203147)the National Natural Science Foundation of China (20473075)
文摘Two novel washcoats Ce0.8Zr0.15La0.05Oδ and Ce0.8Zr0.2O2 was prepared by an impregnation method, which acted as a host for the active Pd component to prepare Pd/Ce0.8Zr0.15La0.05Oδ/substrate and Pd/Ce0.8Zr0.2O2/substrate monolithic catalysts for toluene combustion. The washcoats was characterized by X-ray diffraction (XRD), Raman spectroscopy, Brunauner-Emmett-Teller (BET), and H2-temperature-programmed reduction (H2-TPR). The result indicated that both the washcoats had strong vibration-shock resistance according to ultrasonic test. Doping La3+ into CeO2-ZrO2 solid solution could generate more oxygen vacancies, and could inhibit the sinter of CeO2-ZrO2 solid solution when calcined at high temperatures (800, 900 and 1000 °C). The washcoat Ce0.8Zr0.15La0.05Oδ had much better redox properties. The reductive temperature of Ce4+ species shifted to low temperature by 60 °C when the washcoats calcined at high temperatures (800, 900 and 1000 °C). The Pd/Ce0.8Zr0.15La0.05Oδ/substrate monolithic catalyst calcination at 500 °C had the best catalytic activity and the 95% toluene conversion at a temperature as low as 190 °C. When calcined at low temperature (500 and 700 °C), the catalytic activity has little improvement, however, when calcined at high temperature, the catalytic activity of Pd/Ce0.8Zr0.15La0.05Oδ/substrate monolithic catalysts had significant improvement. As catalyst washcoat, the Ce0.8Zr0.15La0.05Oδ had better thermal stability than the washcoat Ce0.8Zr0.2O2, the developed Pd/Ce0.8Zr0.15La0.05Oδ/ substrate monolithic catalyst in this work was promising for eliminating Volatile organic compounds.
基金The national Natural Science Foundation of China (No. 20336020) the Doctorate Foundation of the State Education Ministry of China (No.20020561010) The Natural Science Foundation of Guangdong Province of China (No.36566).
文摘CuOγ-Al2O3 catalysts were prepared by plasma treatment and conventional impregnation methods. The catalytic combustion of two kinds of volatile organic compounds (VOCs), toluene and benzene, were carried out over these CuOγ-Al2O3 catalysts. The surface properties of these catalysts were characterized by X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The experimental results showed that in catalytic combustion the activity of the CuOγ-Al2O3 catalyst prepared via plasma was much higher than that of the CuOγ-Al2O3 catalyst prepared by conventional impregnation method. XRD results showed that an enhanced dispersion had been achieved with the plasma treatment. SEM results indicated that the size became much smaller and the surface became more uniform with the plasma treatment.
基金This work was supported by the National Natural Science Foundation of China(Nos.22125204,U20B6004).
文摘Volatile organic compounds(VOCs)have become one of the most serious threats to human health and eco-environment due to their volatility,toxicity and diffusivity,etc.Catalytic completely oxidation had been regarded as a highly efficient strategy for the VOCs abatement.Metal or metal oxides supported on zeolite have been considered as superior catalysts for the treatment of VOCs.Among them,Beta zeolites have attracted many attentions due to their unique structure and consequently catalytic properties in the oxidation of VOCs.The progresses and developments made in the understanding and design of Beta zeolites-based catalysts in the completely oxidation of VOCs in the past two decades have been systematically summarized in this review.
基金supported by the Natural Science Foundation of China(Nos.21622701,21477005,U1507108,and 21676028)National Key R&D Program of China(No.2016YFC0204800)+3 种基金Foundation for the Author of National Excellent Doctoral Dissertation of China(No.201462)Beijing Nova Program(No.Z141109001814106)Beijing Municipal Natural Science Foundation(No.2132015)Natural Science Foundation of Beijing Municipal Commission of Education(No.KM201410005008)
文摘α-MnO2 nanotubes and their supported Au-Pd alloy nanocatalysts were prepared using hydrothermal and polyvinyl alcohol-protected reduction methods, respectively. Their catalytic activity for the oxidation of toluene/m-xylene, acetone/ethyl acetate, acetone/m-xylene and ethyl acetate/m-xylene mixtures was evaluated. It was found that the interaction between Au-Pd alloy nanoparticles and α-MnO2 nanotubes significantly improved the reactivity of lattice oxygen, and the 0.91 wt.% Au0.48 Pd/α-MnO2 nanotube catalyst outperformed the α-MnO2 nanotube catalyst in the oxidation of toluene, m-xylene, ethyl acetate and acetone. Over the0.91 wt.% Au0.48 Pd/α-MnO2 nanotube catalyst,(i) toluene oxidation was greatly inhibited in the toluene/m-xylene mixture, while m-xylene oxidation was not influenced;(ii) acetone and ethyl acetate oxidation suffered a minor impact in the acetone/ethyl acetate mixture; and(iii) m-xylene oxidation was enhanced whereas the oxidation of the oxygenated VOCs(volatile organic compounds) was suppressed in the acetone/m-xylene or ethyl acetate/m-xylene mixtures. The competitive adsorption of these typical VOCs on the catalyst surface induced an inhibitive effect on their oxidation, and increasing the temperature favored the oxidation of the VOCs. The mixed VOCs could be completely oxidized into CO2 and H2 O below 320°C at a space velocity of 40,000 m L/(g·hr). The 0.91 wt.% Au0.48 Pd/α-MnO2 nanotube catalyst exhibited high catalytic stability as well as good tolerance to water vapor and CO2 in the oxidation of the VOC mixtures. Thus, the α-MnO2 nanotube-supported noble metal alloy catalysts hold promise for the efficient elimination of VOC mixtures.
基金supported by the National Natural Science Foundation of China (21377008, 21477005, U1507108)National High Technology Re-search and Development Program of China (2015AA034603)+1 种基金Beijing Nova Program (Z141109001814106)Natural Science Foundation of Bei-jing Municipal Commission of Education (KM201410005008)~~
文摘Using the molten salt and polyvinyl alcohol-protected reduction method,we fabricated Co3O4 octahedron-supported Au-Pd(x(AuPdy)/Co3O4;x =(0.18,0.47,and 0.96) wt%;y(Pd/Au molar ratio) =1.85-1.97) nanocatalysts.The molten salt-derived Co3O4 sample possessed well-defined octahedral morphology,with an edge length of 300 nm.The Au-Pd nanoparticles,with sizes of 2.7-3.2 nm,were uniformly dispersed on the surface of Co3O4.The 0.96(AuPd1.92)/Co3O4 sample showed the highest catalytic activity for toluene and o-xylene oxidation,and the temperature required for achieving 90%conversion of toluene and o-xylene was 180 and 187 ℃,respectively,at a space velocity of 40000 mL/(g·h).The high catalytic performance of Co3O4 octahedron-supported Au-Pd nanocatalysts was associated with the interaction between Au-Pd nanoparticles and Co3O4 and high concentration of adsorbed oxygen species.
基金supported by Beijing Natural Science Foundation (8164063)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB05050100)~~
文摘Ruthenium (Ru)‐based catalysts are widely employed in several types of gas‐solid reactions because of their high catalytic activities. This review provides theoretical research on Ru‐based catalysts and an analysis of their basic properties and oxidation behavior. There is particular emphasis on Ru‐catalyzed gas‐solid catalytic reactions, including the catalytic oxidation of VOCs, preferential oxidation of CO, synthesis of ammonia, oxidation of HCl and partial oxidation of CH4. Recent litera‐ture on catalysis is summarized and compared. Finally, we describe current challenges in the field and propose approaches for future development of Ru‐based catalysts.
基金financially supported by the Zhejiang Provincial Natural Science Foundation(Grant No.LQ19B030004)the National Natural Science Foundation of China(NSFC,Grant Nos.21906106 and 21808048)the soft science research project of Shaoxing Association of Science and Technology。
文摘Emission of volatile organic compounds has important influence on complex air pollution and human health.In this paper,a series of tungsten-iron composite oxides with different proportions and preparation methods were synthesized and first used for catalytic combustion of chlorobenzene and toluene,as typical polluting gas sources.These WO_(3)-based solid catalytic materials were systematically characterized by modern analytical methods,and the results showed that there was strong electron interaction between W and Fe elements in the composite oxides,and the presence of a certain amount of tungsten oxide inhibited the crystallization of iron oxide,and vice versa,which were beneficial to the uniform dispersion of tungsten-iron components into each other and the improvement of redox properties.Compared with single-component oxide,the formation of tungsten-iron composite oxide affected the micro-structure,improved the specific surface area and optimized the pore structure of materials.The performance test results showed that the tungsten-iron composite oxide(FeWO_4-0.5 Fe_(2)O_(3),molar ratio of tungsten and iron was 1/2)prepared using citric acid-based sol-gel method was the optimal,and its catalytic degradation efficiency could reach 90%for chlorobenzene and 83%for toluene at 320℃,and maintain at least 60 h without obvious deactivation,with high selectivity to the formation of HCl and CO_(2).
基金the LICP Cooperation Foundation for Young Scholars(No.HZJJ21-02)the National Natural Science Foundation of China(Nos.52070182 and 51908535)+2 种基金the DNL Cooperation Found,Chinese Academy of Sciences(No.DNL202004)Province Natural Science Foundation of GanSu(Nos.20JR10RA053 and 20JR10RA046)Major Program of the Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences(No.ZYFZFX-10).
文摘In this study,a novel three-dimensional(3D)-OMm-Co_(3)O_(4)/SiO_(2)-0.5AP(OMm=ordered macro–meso porous,AP=aluminum phosphate)monolithic catalyst was for the first time constructed successfully with the hierarchical Co-phyllosilicate ultrathin nanosheets growth on the surface of 3D printed ordered macropore–mesoporous SiO_(2)support.On the one hand,we discovered that the construction of ordered macropore–mesoporous structures is beneficial to the diffusion and adsorption of reactants,intermediates,and products.On the other hand,the formation of hierarchical Co-phyllosilicate ultrathin nanosheets could provide more active Co&+species,abundant acid sites,and active oxygen.The above factors are in favor of improving the catalytic performance of benzene oxidation,and then a 3D-OMm-Co_(3)O_(4)/SiO_(2)-0.5AP catalyst exhibited the superior catalytic activity.To explore the effect of catalysts structure and morphology,various Co-based catalysts were also constructed.Simultaneously,the 3D-OMm-Co_(3)O_(4)/SiO_(2)-0.5AP catalyst has excellent catalytic performance,water resistance,and thermal stability in the catalytic combustion of benzene due to the strong interactions between Co&+species and SiO_(2)in the phyllosilicate.Therefore,this study proposes a new catalyst synthesis method through 3D printing,and presents considerable prospects for the removal of VOCs from industrial applications.
基金supported by the Scientific Research Fund of Zhejiang Provincial Education Department(Y202043197)the National Natural Science Foundation of China(22078294)+1 种基金the Natural Science Foundation of Zhejiang Province(LZ21E080001,LGF20E080018)the Key Laboratory of Environmental Pollution Control Technology Research of Zhejiang Province(2021ZEKL04)。
文摘CeO_(2),La_(2)O_(3),and CeO_(2)-Y_(2)O_(3) oxides were coated on the surface of spherical granular AI_(2)O_(3)(3-5 mm)through impregnation method,and proved as better supports of Pd and Pt catalysts.The influences of rare earth metal doping on the adsorption rates of Pd and Pt ions,as well as the catalytic performance,were investigated.Results show that the H_(2)PtCl_(6)·6H_(2)O adsorption rates of the Al_(2)O_(3) carriers modified by Ce,La,and CeY increase significantly.These rare earth coatings can adsorb almost all H2PtCl_(6)·6H_(2)O in the solution.Compared with Pt/Al_(2)O_(3) catalyst,Pt/Ce-AI_(2)O_(3) and Pt/CeY-AI_(2)O_(3) catalysts have better degradation performance for toluene,and the T_(90) temperatures are both about 147℃.According to X-ray photoelectron spectroscopy(XPS)characterization,Pt^(0)is an important active species for catalytic oxidation reaction of toluene.After CeO_(2)modification to the conventional Pt/Al_(2)O_(3)catalyst,the proportion of Pt^(0)increases from 74.5%to 82.1%.When the Pt^(0)content in the metal state is improved,the redox activity of the catalyst is promoted correspondingly.
基金Project supported by Zhejiang Provincial Nature Science Foundation of China (203147)the National Natural ScienceFoundation of China (20473075)
文摘A Ce0.4Zr0.6O2 washcoat was prepared using an impregnation method, which acted as a host for the active Pd component to prepare a Pd-Ce0.4Zr0.6O2/substrate monolithic catalyst for toluene combustion. The catalyst was characterized by scanning electron microscopy (SEM), Raman spectroscopy, Brunauner-Emmett-Teller (BET), and carbon monoxide tonperature-programmed reduction (CO-TPR). It was found that the washcoat had strong vibration-shock resistance according to an ultrasonic test. The Pd-Ce0.4Zr0.6O2/substrate monolithic catalyst calcined at 400 ℃ showed 95% toluene conversion at a temperature as low as 210 ℃. Furthermore, the lowest temperature for 95% toluene conversion was increased by 40℃ after the catalyst calcined at 900℃, indicating that the catalyst had good thermal stability. The results revealed that the developed catalyst in this study was promising for eliminating volatile organic compounds (VOCs).
基金the framework of the China-Greece joint research andtechnology programmes 2000-2002(Project title:‘Investigation on the characteristics of forest fires in the early stage andits control technique National Natural Science Foundation of China under Grants 50346038 , 50320120156,the China NK-BRSF project(No.2001CB409600)the Anhui Ex-cellent Youth Scientist Fundation(2001-2002),and the National Key Technologies R&D Programme(2001BA510B09-03).