Porous flower-like SnO_(2)/CdSnO_(3) microstructures self-assembled by uniform nanosheets were synthesized using a hydrothermal process followed by calcination,and the sensing performance was measured when a gas senso...Porous flower-like SnO_(2)/CdSnO_(3) microstructures self-assembled by uniform nanosheets were synthesized using a hydrothermal process followed by calcination,and the sensing performance was measured when a gas sensor,based on such microstructures,was exposed to various volatile organic compound(VOC)gases.The response value was found to reach as high as 100.1 when the SnO_(2)/CdSnO_(3) sensor was used to detect 100 ppm formaldehyde gas,much larger than those of other tested VOC gases,indicating the high gas sensitivity possessed by this sensor especially in the detection of formaldehyde gas.Meanwhile,the response/recovery process was fast with the response time and recovery time of only 13 and 21 s,respectively.The excellent gas sensing performance derive from the advantages of SnO_(2)/CdSnO_(3),such as abundant n-n heterojunctions built at the interface,high available specific surface area,abundant porosity,large pore size,and rich reactive oxygen species,as well as joint effects arising from SnO_(2) and CdSnO_(3),suggesting that such porous flower-like SnO_(2)/CdSnO_(3) microstructures composed of nanosheets have a high potential for developing gas sensors.展开更多
基金financially supported by the National Research Foundation of Korea NRF-2019R1A5A8080290the National Natural Science Foundation of China(Grant No.52171148)the Natural Science Foundation of Anhui Province(Grant No.2008085J23).
文摘Porous flower-like SnO_(2)/CdSnO_(3) microstructures self-assembled by uniform nanosheets were synthesized using a hydrothermal process followed by calcination,and the sensing performance was measured when a gas sensor,based on such microstructures,was exposed to various volatile organic compound(VOC)gases.The response value was found to reach as high as 100.1 when the SnO_(2)/CdSnO_(3) sensor was used to detect 100 ppm formaldehyde gas,much larger than those of other tested VOC gases,indicating the high gas sensitivity possessed by this sensor especially in the detection of formaldehyde gas.Meanwhile,the response/recovery process was fast with the response time and recovery time of only 13 and 21 s,respectively.The excellent gas sensing performance derive from the advantages of SnO_(2)/CdSnO_(3),such as abundant n-n heterojunctions built at the interface,high available specific surface area,abundant porosity,large pore size,and rich reactive oxygen species,as well as joint effects arising from SnO_(2) and CdSnO_(3),suggesting that such porous flower-like SnO_(2)/CdSnO_(3) microstructures composed of nanosheets have a high potential for developing gas sensors.