A transient three-dimensional coupling model based on the compressible volume of fluid (VOF) method was developed to simulate the transport of volatile pollutants at the air-water interface. VOF is a numerical techn...A transient three-dimensional coupling model based on the compressible volume of fluid (VOF) method was developed to simulate the transport of volatile pollutants at the air-water interface. VOF is a numerical technique for locating and tracking the free surface of water flow. The relationships between Henry's constant, thermodynamics parameters, and the enlarged topological index were proposed for nonstandard conditions. A series of experiments and numerical simulations were performed to study the transport of benzene and carbinol. The simulation results agreed with the experimental results. Temperature had no effect on mass transfer of pollutants with low transfer free energy and high Henry's constant. The temporal and spatial distribution of pollutants with high transfer free energy and low Henry's constant was affected by temperature. The total enthalpy and total transfer free energy increased significantly with temperature, with significant fluctuations at low temperatures. The total enthalpy and total transfer free energy increased steadily without fluctuation at high temperatures.展开更多
The volatile pollutants that spill into natural waters cause water pollution. Air pollution arises from the water pollution because of volatilization. Mass exchange caused by turbulent fluctuation is stronger in the d...The volatile pollutants that spill into natural waters cause water pollution. Air pollution arises from the water pollution because of volatilization. Mass exchange caused by turbulent fluctuation is stronger in the direction normal to the air-water interface than in other directions due to the large density difference between water and air. In order to explore the characteristics of anisotropic diffusion of the volatile pollutants at the air-water interface, the relationship between velocity gradient and mass transfer rate was established to calculate the turbulent mass diffusivity. A second-order accurate smooth transition differencing scheme (STDS) was proposed to guarantee the boundedness for the flow and mass transfer at the air-water interface. Simulations and experiments were performed to study the trichloroethylene (C2HC13) release. By comparing the anisotropic coupling diffusion model, isotropic coupling diffusion model, and non-coupling diffusion model, the features of the transport of volatile pollutants at the air-water interface were determined. The results show that the anisotropic coupling diffusion model is more accurate than the isotropic coupling diffusion model and non-coupling diffusion model. Mass transfer significantly increases with the increase of the air-water relative velocity at a low relative velocity. However, at a higher relative velocity, an increase in the relative velocity has no effect on mass transfer.展开更多
For the increasingly serious soil and groundwater pollution by volatile organic compounds, tetrachloroethylene(PCE) was selected as the research object in this study. With the in-situ soil column physical simulation...For the increasingly serious soil and groundwater pollution by volatile organic compounds, tetrachloroethylene(PCE) was selected as the research object in this study. With the in-situ soil column physical simulation experiments, migration law of PCE in soil under rain conditions was studied by monitoring precipitation and soil parameter as well as sampling and analyzing soil and soil gas, and influence of rain on the multiphase migration process of PCE was preliminarily discussed. Research shows that migrations of PCE and soil moisture were not synchronous, and the rate of the former was speeded up by the latter caused by rain. Preliminary analysis indicates that migration of volatile chlorohydrocarbon in soil was not only driven by soil moisture, but also controlled by the nature of volatility of their own, that is to say, volatilization into gas phase was an important way of migrating and diffusing in pore medium, and the rate of migration and diffusion of gaseous PCE was faster than that of solid, resulting in more abroad distribution of gas phase than that in solid phase.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51109106)the Natural Science Foundation of Jiangsu Province(Grant No.BK20130946)the Qing Lan Project of Jiangsu Province
文摘A transient three-dimensional coupling model based on the compressible volume of fluid (VOF) method was developed to simulate the transport of volatile pollutants at the air-water interface. VOF is a numerical technique for locating and tracking the free surface of water flow. The relationships between Henry's constant, thermodynamics parameters, and the enlarged topological index were proposed for nonstandard conditions. A series of experiments and numerical simulations were performed to study the transport of benzene and carbinol. The simulation results agreed with the experimental results. Temperature had no effect on mass transfer of pollutants with low transfer free energy and high Henry's constant. The temporal and spatial distribution of pollutants with high transfer free energy and low Henry's constant was affected by temperature. The total enthalpy and total transfer free energy increased significantly with temperature, with significant fluctuations at low temperatures. The total enthalpy and total transfer free energy increased steadily without fluctuation at high temperatures.
基金supported by the National Natural Science Foundation of China (Grant No. 51109106)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No.11KJB570001)
文摘The volatile pollutants that spill into natural waters cause water pollution. Air pollution arises from the water pollution because of volatilization. Mass exchange caused by turbulent fluctuation is stronger in the direction normal to the air-water interface than in other directions due to the large density difference between water and air. In order to explore the characteristics of anisotropic diffusion of the volatile pollutants at the air-water interface, the relationship between velocity gradient and mass transfer rate was established to calculate the turbulent mass diffusivity. A second-order accurate smooth transition differencing scheme (STDS) was proposed to guarantee the boundedness for the flow and mass transfer at the air-water interface. Simulations and experiments were performed to study the trichloroethylene (C2HC13) release. By comparing the anisotropic coupling diffusion model, isotropic coupling diffusion model, and non-coupling diffusion model, the features of the transport of volatile pollutants at the air-water interface were determined. The results show that the anisotropic coupling diffusion model is more accurate than the isotropic coupling diffusion model and non-coupling diffusion model. Mass transfer significantly increases with the increase of the air-water relative velocity at a low relative velocity. However, at a higher relative velocity, an increase in the relative velocity has no effect on mass transfer.
基金supported by the National Program on Key Basic Research Project (973 Program) (No. 2010CB428804-1)the National Natural Science Foundation of China (No. 41402230)+1 种基金the Key Laboratory Open Founda-tion of Chinese Academy of Geological Sciences (No. SYS1305)Groundwater Science and Engineering Experimental Site in field of Ministry of Land and Resources of China for providing site and the site workers’ support
文摘For the increasingly serious soil and groundwater pollution by volatile organic compounds, tetrachloroethylene(PCE) was selected as the research object in this study. With the in-situ soil column physical simulation experiments, migration law of PCE in soil under rain conditions was studied by monitoring precipitation and soil parameter as well as sampling and analyzing soil and soil gas, and influence of rain on the multiphase migration process of PCE was preliminarily discussed. Research shows that migrations of PCE and soil moisture were not synchronous, and the rate of the former was speeded up by the latter caused by rain. Preliminary analysis indicates that migration of volatile chlorohydrocarbon in soil was not only driven by soil moisture, but also controlled by the nature of volatility of their own, that is to say, volatilization into gas phase was an important way of migrating and diffusing in pore medium, and the rate of migration and diffusion of gaseous PCE was faster than that of solid, resulting in more abroad distribution of gas phase than that in solid phase.