In order to study the effect of excess sludge ozonation, a continuous experiment in lab scale process was carried out. During the treatment process, a high level of ozone was produced by the electrolysis-type ozone ge...In order to study the effect of excess sludge ozonation, a continuous experiment in lab scale process was carried out. During the treatment process, a high level of ozone was produced by the electrolysis-type ozone generator, and various parameters, such as Soluble Chemical Oxygen Demand (SCOD), Mixed Liquor Suspended Solids (MLSS), Mixed Liquor Volatile Suspended Solids (MLVSS), pH and so on, which char- acterize sludge were investigated. A substantial reduction in the volume of sludge and the release of intracellular materials were observed: SCOD proliferated as a consequence of extending the ozone feeding time; MLSS and MLVSS, especially the ratio of MLVSS to MLSS, dwindled as the action time rose. Through analyzing the effluent quality and excess sludge activity, the sludge-water volume mixture ratio of 1 : 20 with 50 -60 minutes' oxidation treatment was found to be the optimal condition for ozonic disintegration of excess sludge. A remarkable sludge reduction rate of 57% could be achieved under the ozone feeding time of 40 minutes, which revealed the optimal action time.展开更多
基金Supported by the Fundamental Research Funds for the Central Universities(2010380003161543)Science and Technology Project of Science and Technology Department of Guangdong Province,China(2010B031700023)
文摘In order to study the effect of excess sludge ozonation, a continuous experiment in lab scale process was carried out. During the treatment process, a high level of ozone was produced by the electrolysis-type ozone generator, and various parameters, such as Soluble Chemical Oxygen Demand (SCOD), Mixed Liquor Suspended Solids (MLSS), Mixed Liquor Volatile Suspended Solids (MLVSS), pH and so on, which char- acterize sludge were investigated. A substantial reduction in the volume of sludge and the release of intracellular materials were observed: SCOD proliferated as a consequence of extending the ozone feeding time; MLSS and MLVSS, especially the ratio of MLVSS to MLSS, dwindled as the action time rose. Through analyzing the effluent quality and excess sludge activity, the sludge-water volume mixture ratio of 1 : 20 with 50 -60 minutes' oxidation treatment was found to be the optimal condition for ozonic disintegration of excess sludge. A remarkable sludge reduction rate of 57% could be achieved under the ozone feeding time of 40 minutes, which revealed the optimal action time.