Popular fermented golden pomfret(Trachinotus ovatus)is prepared via spontaneous fermentation;however,the mechanisms underlying the regulation of its flavor development remain unclear.This study shows the roles of the ...Popular fermented golden pomfret(Trachinotus ovatus)is prepared via spontaneous fermentation;however,the mechanisms underlying the regulation of its flavor development remain unclear.This study shows the roles of the complex microbiota and the dynamic changes in microbial community and flavor compounds during fish fermentation.Single-molecule real-time sequencing and molecular networking analysis revealed the correlations among different microbial genera and the relationships between microbial taxa and volatile compounds.Mechanisms underlying flavor development were also elucidated via KEGG based functional annotations.Clostridium,Shewanella,and Staphylococcus were the dominant microbial genera.Forty-nine volatile compounds were detected in the fermented fish samples,with thirteen identified as characteristic volatile compounds(ROAV>1).Volatile profiles resulted from the interactions among the microorganisms and derived enzymes,with the main metabolic pathways being amino acid biosynthesis/metabolism,carbon metabolism,and glycolysis/gluconeogenesis.This study demonstrated the approaches for distinguishing key microbiota associated with volatile compounds and monitoring the industrial production of high-quality fermented fish products.展开更多
To provide new insights into the development and utilization of Douchi artificial starters,three common strains(Aspergillus oryzae,Mucor racemosus,and Rhizopus oligosporus)were used to study their influence on the fer...To provide new insights into the development and utilization of Douchi artificial starters,three common strains(Aspergillus oryzae,Mucor racemosus,and Rhizopus oligosporus)were used to study their influence on the fermentation of Douchi.The results showed that the biogenic amine contents of the three types of Douchi were all within the safe range and far lower than those of traditional fermented Douchi.Aspergillus-type Douchi produced more free amino acids than the other two types of Douchi,and its umami taste was more prominent in sensory evaluation(P<0.01),while Mucor-type and Rhizopus-type Douchi produced more esters and pyrazines,making the aroma,sauce,and Douchi flavor more abundant.According to the Pearson and PLS analyses results,sweetness was significantly negatively correlated with phenylalanine,cysteine,and acetic acid(P<0.05),bitterness was significantly negatively correlated with malic acid(P<0.05),the sour taste was significantly positively correlated with citric acid and most free amino acids(P<0.05),while astringency was significantly negatively correlated with glucose(P<0.001).Thirteen volatile compounds such as furfuryl alcohol,phenethyl alcohol,and benzaldehyde caused the flavor difference of three types of Douchi.This study provides theoretical basis for the selection of starting strains for commercial Douchi production.展开更多
The significant demand for high quality food has motivated us to adopt appropriate processing methods to improve the food nutritional quality and flavors.In this study,the effects of five drying methods,namely,pulsed ...The significant demand for high quality food has motivated us to adopt appropriate processing methods to improve the food nutritional quality and flavors.In this study,the effects of five drying methods,namely,pulsed vacuum drying(PVD),freeze drying(FD),infrared drying(IRD),hot-air drying(HAD)and sun drying(SD)on free amino acids(FAAs),α-dicarbonyl compounds(α-DCs)and volatile compounds(VOCs)in rape bee pollen(RBP)were determined.The results showed that FD significantly released the essential amino acids(EAAs)compared with fresh samples while SD caused the highest loss.Glucosone was the dominantα-DCs in RBP and the highest loss was observed after PVD.Aldehydes were the dominant volatiles of RBP and SD samples contained more new volatile substances(especially aldehydes)than the other four drying methods.Comprehensively,FD and PVD would be potential methods to effectively reduce the quality deterioration of RBP in the drying process.展开更多
Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific micr...Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific microorganisms,enabling the early diagnosis of infections and the timely implementation of tar-geted therapy.However,complex matrices only contain trace levels of VOCs,and their constituent com-ponents can hinder determination of these compounds.Therefore,modern analytical techniques enabling the non-invasive identification and precise quantification of microbial VOCs are needed.In this paper,we discuss bacterial VOC analysis under in vitro conditions,in animal models and disease diagnosis in humans,including techniques for offline and online analysis in clinical settings.We also consider the advantages and limitations of novel microextraction techniques used to prepare biological samples for VOC analysis,in addition to reviewing current clinical studies on bacterial volatilomes that address inter-species in-teractions,the kinetics of VOC metabolism,and species-and drug-resistance specificity.展开更多
Glutinous rice(Oryza sativa var.glutinosa)stands out as one of the most popular rice varieties globally,amidst thousands of rice cultivars.Its increasing popularity is attributed to its rich nutritional compositions a...Glutinous rice(Oryza sativa var.glutinosa)stands out as one of the most popular rice varieties globally,amidst thousands of rice cultivars.Its increasing popularity is attributed to its rich nutritional compositions and health benefits.This review aims to summarize the nutritional compositions,volatile compounds,and health benefits of glutinous rice.Further,in-depth studies are necessary to explore the utilization of glutinous rice in enhancing processing technologies and developing new food products.Glutinous rice has been shown to possess numerous health benefits,including antioxidant activity,bioactive compounds,anti-cancer properties,anti-inflammatory effects,anti-diabetic potential,and cholesterol-lowering effects.Besides its nutritional compositions,the major volatile compounds identified in glutinous rice could serve as a functional food for human consumption.Emerging processing technologies related to glutinous rice are elaborated to improve the latest developments for incorporating them into various food products.展开更多
The rapid development of organic electrochemical transistors(OECTs)has ushered in a new era in organic electronics,distinguishing itself through its application in a variety of domains,from high-speed logic circuits t...The rapid development of organic electrochemical transistors(OECTs)has ushered in a new era in organic electronics,distinguishing itself through its application in a variety of domains,from high-speed logic circuits to sensitive biosensors,and neuromorphic devices like artificial synapses and organic electrochemical random-access memories.Despite recent strides in enhancing OECT performance,driven by the demand for superior transient response capabilities,a comprehensive understanding of the complex interplay between charge and ion transport,alongside electron–ion interactions,as well as the optimization strategies,remains elusive.This review aims to bridge this gap by providing a systematic overview on the fundamental working principles of OECT transient responses,emphasizing advancements in device physics and optimization approaches.We review the critical aspect of transient ion dynamics in both volatile and non-volatile applications,as well as the impact of materials,morphology,device structure strategies on optimizing transient responses.This paper not only offers a detailed overview of the current state of the art,but also identifies promising avenues for future research,aiming to drive future performance advancements in diversified applications.展开更多
The separation of halogens and recovery of heavy metals from secondary copper smelting(SCS)dust using a sulfating roasting−water leaching process were investigated.The thermodynamic analysis results confirm the feasib...The separation of halogens and recovery of heavy metals from secondary copper smelting(SCS)dust using a sulfating roasting−water leaching process were investigated.The thermodynamic analysis results confirm the feasibility of the phase transformation to metal sulfates and to gaseous HF and HCl.Under the sulfating roasting conditions of the roasting temperature of 250℃ and the sulfuric acid excess coefficient of 1.8,over 74 wt.%of F and 98 wt.%of Cl were volatilized into flue gas.Approximately 98.6 wt.%of Zn and 96.5 wt.%of Cu in the roasting product were dissolved into the leaching solution after the water leaching process,while the leaching efficiencies of Pb and Sn were only 0.12%and 0.22%,respectively.The mechanism studies indicate the pivotal effect of roasting temperature on the sulphation reactions from various metal species to metal sulfates and the salting out reactions from various metal halides to gaseous hydrogen halides.展开更多
This study investigated the effects of salt(3%and 6%,m/m)and rice flour(10%and 20%,m/m)addition in sour meat,a traditional Chinese fermented meat.It was found that salt has greater effect than rice flour addition in s...This study investigated the effects of salt(3%and 6%,m/m)and rice flour(10%and 20%,m/m)addition in sour meat,a traditional Chinese fermented meat.It was found that salt has greater effect than rice flour addition in spontaneous fermentation.Low-salt groups had lower pH and higher titratable total acid.In the low-salt groups,the dominant genera were Lactobacillus and Lactococcus,whereas Staphylococcus,Weissella,and Tetragenococcus were dominant in the high-salt groups.Higher total free amino acids and essential amino acids,organic acids,hexanoic acid ethyl ester and octanoic acid ethyl ester were found in the low-salt groups.The RDA analysis revealed that Lactococcus was closely related to product quality,with the S3F10(3%salt and 10%rice f lour)group outperforming the others in the sensory evaluation.Therefore,3%salt and 10%rice flour were considered more appropriate for the production of healthy and tasty fermented sour meats.展开更多
Lactic acid bacteria and coagulase-negative staphylococci play an important role in the production of fermented sausages,such as inhibiting the growth of undesirable bacteria and antioxidant.In this study,the effects ...Lactic acid bacteria and coagulase-negative staphylococci play an important role in the production of fermented sausages,such as inhibiting the growth of undesirable bacteria and antioxidant.In this study,the effects of inoculation with different starter cultures(Lactiplantibacillus plantarum HN108 and Staphylococcus simulans NJ209)on the free amino acids(FAAs),biogenic amines(BAs)and volatile compounds of fermented sausages were investigated using an amino acid analyzer,ultra performance liquid chromatography and gas chromatography-ion mobility spectrometry,respectively.The pH and carbonyl content of the inoculated group was significantly lower than those in the control group(P<0.05).L.plantarum HN108 significantly reduced the content of FAAs and BAs in fermented sausage production(P<0.05),while S.simulans NJ209 promoted the formation of FAAs(especially bitter amino acids)and exhibited slight BAs-reducing activity.In addition,L.plantarum HN108 promoted the formation of volatile compounds such as ketones,alcohols and alkenes in sausages.In conclusion,L.plantarum HN108 could contribute to reducing the content of putrescine and tyramine and forming the desirable flavor compounds in fermented sausages.Thus,L.plantarum HN108 is expected to be a starter culture that can improve the safety and flavor of fermented sausages.展开更多
Dry-cured meat products are considerably popular around the world due to unique flavor.Proteolysis is one of the enzymatic reactions from which flavor substances are derived,which is affected by endogenous proteases.T...Dry-cured meat products are considerably popular around the world due to unique flavor.Proteolysis is one of the enzymatic reactions from which flavor substances are derived,which is affected by endogenous proteases.The purpose aimed to reveal the potential relationship between endogenous proteases and key flavor substances in dry-cured pork coppa in this paper.The dynamic changes of endogenous proteases activity,free amino acids,and volatiles during dry-cured pork coppa processing were characterized.The results showed that 5 kinds of free amino acids,Glu,Lys,Val,Ala,and Leu,were identified as significant contributors to taste.Meanwhile,key volatiles,such as hexanal,nonanal,octanal,benzaldehyde,3-methyl butanoic acid,2-methyl propanoic acid,and ethyl octanoate,greatly contributed to the flavor characteristics of dry-cured pork coppa.Further partial correlation analysis was performed to better elucidate the relationship among parameters.The results revealed that close relationship between endogenous proteases and key substances.RAP not only significantly affected the accumulation of key active-amino acids,but also affected the accumulation of ethyl octanoate,2,3-pentanedione,and 2,3-octanedione by regulating the accumulation of octanoic acid and Leu.In addition,cathepsin B and D,DPP II,DPP IV and RAP notably affected accumulation of hexanal.展开更多
Volatile organic compounds(VOCs)are generally toxic and harmful substances that can cause health and environmental problems.The removal of VOCs from polymers has become a key problem.The effective devolatilization to ...Volatile organic compounds(VOCs)are generally toxic and harmful substances that can cause health and environmental problems.The removal of VOCs from polymers has become a key problem.The effective devolatilization to remove VOCs from high viscous fluids such as polymer is necessary and is of great importance.In this study,the devolatilization effect of a rotating packed bed(RPB)was studied by using polydimethylsiloxane as the viscous fluid and acetone as the VOC.The devolatilization rate and liquid phase volume(KLa)have been evaluated.The results indicated that the optimum conditions were the high-gravity factor of 60,liquid flow rate of 10 L·h^(-1),and vacuum degree of 0.077 MPa.The dimensionless correlation of KLa was established,and the deviations between predicted and experimental values were less than±28%.The high-gravity technology will result in lower mass transfer resistance in the devolatilization process,enhance the mass transfer process of acetone,and improve the removal effect of acetone.This work provides a promising path for the removal of volatiles from polymers in combination with high-gravity technology.It can provide the basis for the application of RPB in viscous fluids.展开更多
Exploring high efficiency S-scheme heterojunction photocatalysts with strong redox ability for removing volatile organic compounds from the air is of great interest and importance.However,how to predict and regulate t...Exploring high efficiency S-scheme heterojunction photocatalysts with strong redox ability for removing volatile organic compounds from the air is of great interest and importance.However,how to predict and regulate the transport of photogenerated carriers in heterojunctions is a great challenge.Here,density functional theory calculations were first used to successfully predict the formation of a CdS quantum dots/InVO_(4)atomic-layer(110)/(110)facet S-scheme heterojunction.Subsequently,a CdS quantum dots/InVO_(4)atomic-layer was synthesized by in-situ loading of CdS quantum dots with(110)facets onto the(110)facets of InVO_(4)atomic-layer.As a result of the deliberately constructed built-in electric field between the adjoining facets,we obtain a remarkably enhanced photocatalytic degradation rate for ethylene.This rate is 13.8 times that of pure CdS and 13.2 times that of pure InVO_(4).In-situ irradiated X-ray photoelectron spectroscopy,photoluminescence and time-resolved photoluminescence measurements were carried out.These experiments validate that the built-in electric field enhanced the dissociation of photoexcited excitons and the separation of free charge carriers,and results in the formation of S-scheme charge transfer pathways.The reaction mechanism of the photocatalytic C_(2)H_(4)oxidation is investigated by in-situ electron paramagnetic resonance.This work provides a mechanistic insight into the construction and optimization of semiconductor heterojunction photocatalysts for application to environmental remediation.展开更多
Nipa palm is one of the non-wood plants rich in lignocellulosic content.In this study,palm fronds were converted into activated carbon,and their physical,chemical,and morphological properties were characterized.The re...Nipa palm is one of the non-wood plants rich in lignocellulosic content.In this study,palm fronds were converted into activated carbon,and their physical,chemical,and morphological properties were characterized.The resulting activated carbon was then applied as an adsorbent of Fe metal in peat water.The carbonization process was carried out for 60 min,followed by sintering at 400℃ for 5 h with a particle size of 200 mesh.KOH and H_(3)PO_(4) were used in the chemical activation process for 24 h.KOH-activated carbon contained 6.13%of moisture,4.55%of ash,17.02%of volatile matter,and 78.84%of fixed carbon,while its Fe reduction efficiency was 28.09%.The H_(3)PO_(4)-activated carbon contained 4.67%of moisture,2.84%of ash,16.41%of volatile matter,and 80.57%of bonded carbon,and the Fe reduction efficiency was 52.25%.KOH-activated carbon and H_(3)PO_(4)-activated carbon contained fixed carbon of 78.84%and 80.57%,respectively,while their average rates of efficiency of Fe reduction were 22.82%and 39.23%,respectively.Overall,the characteristics of activated nipa carbon met the Indonesian standards(SNI No.06-3730-1995).However,H_(3)PO_(4)-activated carbon was found to be better at adsorbing Fe metal from peat water.展开更多
Recent decades have seen a concerning surge in carcinogenic diseases,with cancer cases and deaths on the rise globally.Conventional diagnostic methods are often invasive and time-consuming,highlighting the need for fa...Recent decades have seen a concerning surge in carcinogenic diseases,with cancer cases and deaths on the rise globally.Conventional diagnostic methods are often invasive and time-consuming,highlighting the need for fast,accurate,and painless alternatives.Non-invasive exhaled breath analysis emerges as a promising solution,with over 200 volatile organic compounds(VOCs)detected in exhaled air,showing potential as biomarkers for various diseases,including cancer.Despite the lack of standardized methodologies,advancements in analytical instruments have expanded detection capabilities,reaching 3500 VOCs.Studies have identified specific VOC patterns associated with different cancers,offering hope for non-invasive diagnosis.Techniques such as gas chromatography-mass spectrometry and electronic noses show promise in distinguishing between healthy individuals and cancer patients.However,further research and standardization are needed to realize the full clinical potential of breath-based diagnostics,particularly in the early detection of challenging cancers like pancreatic cancer.展开更多
BACKGROUND Volatile organic compounds(VOCs)are a promising potential biomarker that may be able to identify the presence of cancers.AIM To identify exhaled breath VOCs that distinguish pancreatic ductal adenocar-cinom...BACKGROUND Volatile organic compounds(VOCs)are a promising potential biomarker that may be able to identify the presence of cancers.AIM To identify exhaled breath VOCs that distinguish pancreatic ductal adenocar-cinoma(PDAC)from intraductal papillary mucinous neoplasm(IPMN)and healthy volunteers.METHODS We collected exhaled breath from histologically proven PDAC patients,radiological diagnosis IPMN,and healthy volunteers using the ReCIVA®device between 10/2021-11/2022.VOCs were identified by thermal desorption-gas chromatography/field-asymmetric ion mobility spectrometry and compared between groups.RESULTS A total of 156 participants(44%male,mean age 62.6±10.6)were enrolled(54 PDAC,42 IPMN,and 60 controls).Among the nine VOCs identified,two VOCs that showed differences between groups were dimethyl sulfide[0.73 vs 0.74 vs 0.94 arbitrary units(AU),respectively;P=0.008]and acetone dimers(3.95 vs 4.49 vs 5.19 AU,respectively;P<0.001).After adjusting for the imbalance parameters,PDAC showed higher dimethyl sulfide levels than the control and IPMN groups,with adjusted odds ratio(aOR)of 6.98(95%CI:1.15-42.17)and 4.56(1.03-20.20),respectively(P<0.05 both).Acetone dimer levels were also higher in PDAC compared to controls and IPMN(aOR:5.12(1.80-14.57)and aOR:3.35(1.47-7.63),respectively(P<0.05 both).Acetone dimer,but not dimethyl sulfide,performed better than CA19-9 in PDAC diagnosis(AUROC 0.910 vs 0.796).The AUROC of acetone dimer increased to 0.936 when combined with CA19-9,which was better than CA19-9 alone(P<0.05).CONCLUSION Dimethyl sulfide and acetone dimer are VOCs that potentially distinguish PDAC from IPMN and healthy participants.Additional prospective studies are required to validate these findings.展开更多
This study simplifies the complex relationship among grapevine plants,aphids,ladybirds,and ants,which is essential for effective pest management and ecological balance.This study investigated the impact of aphid attack...This study simplifies the complex relationship among grapevine plants,aphids,ladybirds,and ants,which is essential for effective pest management and ecological balance.This study investigated the impact of aphid attacks and the presence of ants and ladybirds on the volatile compounds profile released into the chemosphere of the community consisting of the common vine Vitis vinifera,the aphid Aphis illinoisensis,the ladybird Cocci-nella undecimpunctata-and the ant Tapinoma magnum.This study aims to analyze the volatile compounds emitted by the grapevine and surrounding insects in response to these intricate interactions.The extraction of volatile organic compounds(VOCs)was carried out using closed-loop stripping(CLS)and then analyzed via gas chromatography-mass spectrometry(GC-MS)and principles coordinated analysis(PCA)was performed.The grapevine was exposed to different types and order of treatments,including non-infested,aphid-infested,aphid-infested with ant,aphid-infested with ladybird,and various combinations of ant and ladybird.After the aphid attack,the outcomes uncovered massive alterations in the volatile compound profiles.Infested grapevine displayed distinct emissions of germacrene D,an alcohol,and an alkene compared to non-infested plants.The characteristic VOC profile was the share of infested grapes in the presence of ants,with benzene derivatives and sesquiterpenes dominating the components.The coexistence of ladybirds with ants and aphids resulted in a dif-ferent volatile profile characterized by elevated levels of aldehydes,ketones,α-farnesene,and its hydroxy deriva-tive.It was concluded that the emission of VOCs into the chemosphere of the grapevine communities varied qualitatively and quantitatively depending on the level of the relationship complexity within each community in response to the infestation of grapevines by aphids,the presence of ladybirds as natural predators,and the presence of ant as protector.The grapevine’s status-dependent compounds can serve as indicators of infestation status and contribute to non-destructive early-stage diagnosis of the aphid.展开更多
Valeriana officinalis L.is a plant from the Caprifoliaceae family,which is widely distributed in various parts of the world,especially in Europe and Asia.All species of Valeriana are distinguished by their ability to s...Valeriana officinalis L.is a plant from the Caprifoliaceae family,which is widely distributed in various parts of the world,especially in Europe and Asia.All species of Valeriana are distinguished by their ability to synthesize essen-tial oil,which has a powerful effect on the physiological and mental aspects of the human body.The aim was to study the qualitative and quantitative composition of essential oil from valerian roots,collected in different coun-tries,using the gas chromatography method,and to establish marker compounds for valerian species.13 samples of commercial roots with rhizomes of V.officinalis from nine countries of the world and a sample of Valeriana pratensis and Valeriana stolonifera growing in Ukraine were selected for the study.The essential oil was obtained from dried valerian roots by the distillation method described in the European Pharmacopoeia.To determine the component composition of the essential oils of the selected samples,the methods of gas chromatography with a mass spectrometric detector and capillary gas chromatography were used.The commercial samples of V.offici-nalis from different countries yielded 0.21%–1.03%of essential oil.Only six of 13 samples contained essential oil in an amount that satisfies the requirement of the European Pharmacopoeia standard(not less than 4 mL/kg).150 compounds were identified in the essential oils of 13 samples of V.officinalis essential oils.The range and average content and coefficients of variation of the identified compounds were determined.The principal com-pounds of V.officinalis essential oils were bornyl acetate(1.6%–27.1%),valeranone(0.5%–17.9%),valerenal(0%–14.7%),camphene(0%–14.6%),α-fenchene(0%–10.6%),and valerenic acid(0%–8.5%).The samples of V.pratensis and V.stolonifera yielded rather high levels of essential oil(1.18%and 0.93%,respectively).Three chemotypes of V.officinalis samples were determined-bornyl acetate/valerenal,valeranone,and isovaleric acid.The composition of the three essential oils compared was rather similar.Based on the study results,we propose the following marker compounds for V.officinalis consistently present in all 16 examined samples:bornyl acetate(1.6%–27.1%),limonene(0.2–2.3),and valeranone(0.5%–17.9%).The study of samples from Ukraine indicates the prospects of using these species of the genus Valeriana with the aim of expanding the raw material base and creating potential herbal preparations with a sedative effect,which are extremely necessary for the population of the country in the war and post-war periods.展开更多
Volatile oil(VO)is the main chemical component of common plants in Chrysanthemum genus,and it possesses several beneficial pharmacological properties,including bacteriostatic,antioxidant,anti-tumor,anti-inflammatory,a...Volatile oil(VO)is the main chemical component of common plants in Chrysanthemum genus,and it possesses several beneficial pharmacological properties,including bacteriostatic,antioxidant,anti-tumor,anti-inflammatory,antipyretic,analgesic,antiosteoporotic,antihypertensive,sedative,and hypnotic effects.To date,research on the effective components of Chrysanthemum extract has mainly focused on flavonoids,whereas limited data are available on the chemical constituents and underlying mechanisms of action of the VO components.In this review,the pharmacological activities and mechanisms of VO are comprehensively reviewed with the aim of providing a foundation for further development for medicinal,aromatherapy,and diet therapy applications.展开更多
The fruits of Amomum tsao-ko(Cao-Guo)were documented in Chinese Pharmacopoeia for the treatment of abdominal pain,vomiting,and plague.In our previous study,a series of diarylheptanes and flavonoids withα-glucosidase ...The fruits of Amomum tsao-ko(Cao-Guo)were documented in Chinese Pharmacopoeia for the treatment of abdominal pain,vomiting,and plague.In our previous study,a series of diarylheptanes and flavonoids withα-glucosidase and protein tyrosine phosphatase 1B(PTP1B)inhibitory activity have been reported from the middle-polarity part of A.tsao-ko,whereas the antidiabetic potency of the low-polarity constituents is still unclear.In this study,three new hydroxytetradecenals,(2E,4E,8Z,11Z)-6R-hydroxytetradeca-2,4,8,11-tetraenal(1),(2E,4E,8Z)-6R-hydroxytetradeca-2,4,8-trienal(2)and(2E,4E)-6R-hydroxytetradeca-2,4-dienal(3)were obtained from the volatile oils of A.tsao-ko.The structures of compounds 1–3 were determined using spectroscopic data involving 1D and 2D nuclear magnetic resonance(NMR),high-resolution mass spectra(HRMS),and specific rotation([α]D).Their hypoglycemic activity was evaluated against glycogen phosphorylase(GPa)and PTP1B.Compounds 1 and 2 displayed moderate activity against PTP1B with inhibition rates of 33.8%−50.3%at 100 and 200μM.Moreover,compound 1 exhibited an obvious inhibitory effect on GPa(IC50=31.7μM),whereas compound 2 was inactive.This study demonstrates hydroxytetradecenals as the characteristic components of A.tsao-ko with therapeutic potential in diabetes.展开更多
基金supported by the National Natural Science Foundation of China(32001733)the Earmarked fund for CARS(CARS-47)+3 种基金Guangxi Natural Science Foundation Program(2021GXNSFAA196023)Guangdong Basic and Applied Basic Research Foundation(2021A1515010833)Young Talent Support Project of Guangzhou Association for Science and Technology(QT20220101142)the Special Scientific Research Funds for Central Non-profit Institutes,Chinese Academy of Fishery Sciences(2020TD69)。
文摘Popular fermented golden pomfret(Trachinotus ovatus)is prepared via spontaneous fermentation;however,the mechanisms underlying the regulation of its flavor development remain unclear.This study shows the roles of the complex microbiota and the dynamic changes in microbial community and flavor compounds during fish fermentation.Single-molecule real-time sequencing and molecular networking analysis revealed the correlations among different microbial genera and the relationships between microbial taxa and volatile compounds.Mechanisms underlying flavor development were also elucidated via KEGG based functional annotations.Clostridium,Shewanella,and Staphylococcus were the dominant microbial genera.Forty-nine volatile compounds were detected in the fermented fish samples,with thirteen identified as characteristic volatile compounds(ROAV>1).Volatile profiles resulted from the interactions among the microorganisms and derived enzymes,with the main metabolic pathways being amino acid biosynthesis/metabolism,carbon metabolism,and glycolysis/gluconeogenesis.This study demonstrated the approaches for distinguishing key microbiota associated with volatile compounds and monitoring the industrial production of high-quality fermented fish products.
基金supported by Special key project of technological innovation and application development in Yongchuan District,Chongqing(2021yc-cxfz20002)the special funds of central government for guiding local science and technology developmentthe funds for the platform projects of professional technology innovation(CSTC2018ZYCXPT0006).
文摘To provide new insights into the development and utilization of Douchi artificial starters,three common strains(Aspergillus oryzae,Mucor racemosus,and Rhizopus oligosporus)were used to study their influence on the fermentation of Douchi.The results showed that the biogenic amine contents of the three types of Douchi were all within the safe range and far lower than those of traditional fermented Douchi.Aspergillus-type Douchi produced more free amino acids than the other two types of Douchi,and its umami taste was more prominent in sensory evaluation(P<0.01),while Mucor-type and Rhizopus-type Douchi produced more esters and pyrazines,making the aroma,sauce,and Douchi flavor more abundant.According to the Pearson and PLS analyses results,sweetness was significantly negatively correlated with phenylalanine,cysteine,and acetic acid(P<0.05),bitterness was significantly negatively correlated with malic acid(P<0.05),the sour taste was significantly positively correlated with citric acid and most free amino acids(P<0.05),while astringency was significantly negatively correlated with glucose(P<0.001).Thirteen volatile compounds such as furfuryl alcohol,phenethyl alcohol,and benzaldehyde caused the flavor difference of three types of Douchi.This study provides theoretical basis for the selection of starting strains for commercial Douchi production.
基金supported by National Natural Science Foundation of China(Nos.31871861 and 31501548)The Apicultural Industry Technology System(NCYTI-43-KXJ17)The Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2015-IAR)。
文摘The significant demand for high quality food has motivated us to adopt appropriate processing methods to improve the food nutritional quality and flavors.In this study,the effects of five drying methods,namely,pulsed vacuum drying(PVD),freeze drying(FD),infrared drying(IRD),hot-air drying(HAD)and sun drying(SD)on free amino acids(FAAs),α-dicarbonyl compounds(α-DCs)and volatile compounds(VOCs)in rape bee pollen(RBP)were determined.The results showed that FD significantly released the essential amino acids(EAAs)compared with fresh samples while SD caused the highest loss.Glucosone was the dominantα-DCs in RBP and the highest loss was observed after PVD.Aldehydes were the dominant volatiles of RBP and SD samples contained more new volatile substances(especially aldehydes)than the other four drying methods.Comprehensively,FD and PVD would be potential methods to effectively reduce the quality deterioration of RBP in the drying process.
基金funded by the National Science Centre,Poland(Project No.:2017/26/D/NZ6/00136).
文摘Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific microorganisms,enabling the early diagnosis of infections and the timely implementation of tar-geted therapy.However,complex matrices only contain trace levels of VOCs,and their constituent com-ponents can hinder determination of these compounds.Therefore,modern analytical techniques enabling the non-invasive identification and precise quantification of microbial VOCs are needed.In this paper,we discuss bacterial VOC analysis under in vitro conditions,in animal models and disease diagnosis in humans,including techniques for offline and online analysis in clinical settings.We also consider the advantages and limitations of novel microextraction techniques used to prepare biological samples for VOC analysis,in addition to reviewing current clinical studies on bacterial volatilomes that address inter-species in-teractions,the kinetics of VOC metabolism,and species-and drug-resistance specificity.
基金the Ministry of Higher Education,Malaysia for financial support via the Transdisciplinary Research Grant Scheme Project(Grant No.TRGS/1/2020/UPM/02/7)。
文摘Glutinous rice(Oryza sativa var.glutinosa)stands out as one of the most popular rice varieties globally,amidst thousands of rice cultivars.Its increasing popularity is attributed to its rich nutritional compositions and health benefits.This review aims to summarize the nutritional compositions,volatile compounds,and health benefits of glutinous rice.Further,in-depth studies are necessary to explore the utilization of glutinous rice in enhancing processing technologies and developing new food products.Glutinous rice has been shown to possess numerous health benefits,including antioxidant activity,bioactive compounds,anti-cancer properties,anti-inflammatory effects,anti-diabetic potential,and cholesterol-lowering effects.Besides its nutritional compositions,the major volatile compounds identified in glutinous rice could serve as a functional food for human consumption.Emerging processing technologies related to glutinous rice are elaborated to improve the latest developments for incorporating them into various food products.
基金financial support from NSFC(21704082,21875182,22109125)Key Scientific and Technological Innovation Team Project of Shaanxi Province(2020TD-002)+2 种基金111 Project 2.0(BP2018008)National Key Research and Development Program of China(2022YFE0132400)China Postdoctoral Science Foundation(2021M702585).
文摘The rapid development of organic electrochemical transistors(OECTs)has ushered in a new era in organic electronics,distinguishing itself through its application in a variety of domains,from high-speed logic circuits to sensitive biosensors,and neuromorphic devices like artificial synapses and organic electrochemical random-access memories.Despite recent strides in enhancing OECT performance,driven by the demand for superior transient response capabilities,a comprehensive understanding of the complex interplay between charge and ion transport,alongside electron–ion interactions,as well as the optimization strategies,remains elusive.This review aims to bridge this gap by providing a systematic overview on the fundamental working principles of OECT transient responses,emphasizing advancements in device physics and optimization approaches.We review the critical aspect of transient ion dynamics in both volatile and non-volatile applications,as well as the impact of materials,morphology,device structure strategies on optimizing transient responses.This paper not only offers a detailed overview of the current state of the art,but also identifies promising avenues for future research,aiming to drive future performance advancements in diversified applications.
基金the National Key Research and Development Program of China(No.2019YFC1908400)the National Natural Science Foundation of China(Nos.52174334,52374413)+3 种基金the Jiangxi Provincial Cultivation Program for Academic and Technical Leaders of Major Subjects,China(Nos.20212BCJ23007,20212BCJL23052)the Jiangxi Provincial Natural Science Foundation,China(Nos.20224ACB214009,20224BAB214040)the Double Thousand Plan of Jiangxi Province,China(No.S2021GDQN2970)the Distinguished Professor Program of Jinggang Scholars in Institutions of Higher Learning of Jiangxi Province,China.
文摘The separation of halogens and recovery of heavy metals from secondary copper smelting(SCS)dust using a sulfating roasting−water leaching process were investigated.The thermodynamic analysis results confirm the feasibility of the phase transformation to metal sulfates and to gaseous HF and HCl.Under the sulfating roasting conditions of the roasting temperature of 250℃ and the sulfuric acid excess coefficient of 1.8,over 74 wt.%of F and 98 wt.%of Cl were volatilized into flue gas.Approximately 98.6 wt.%of Zn and 96.5 wt.%of Cu in the roasting product were dissolved into the leaching solution after the water leaching process,while the leaching efficiencies of Pb and Sn were only 0.12%and 0.22%,respectively.The mechanism studies indicate the pivotal effect of roasting temperature on the sulphation reactions from various metal species to metal sulfates and the salting out reactions from various metal halides to gaseous hydrogen halides.
基金supported by the National Key Research and Development Project(2022YFD2100902)National Natural Science Foundation of China(32372363)+1 种基金Dalian High-level Talent Innovation Support Program(2021RQ093)the Basic Research Project of Education Department of Liaoning Province(LJKZ0544).
文摘This study investigated the effects of salt(3%and 6%,m/m)and rice flour(10%and 20%,m/m)addition in sour meat,a traditional Chinese fermented meat.It was found that salt has greater effect than rice flour addition in spontaneous fermentation.Low-salt groups had lower pH and higher titratable total acid.In the low-salt groups,the dominant genera were Lactobacillus and Lactococcus,whereas Staphylococcus,Weissella,and Tetragenococcus were dominant in the high-salt groups.Higher total free amino acids and essential amino acids,organic acids,hexanoic acid ethyl ester and octanoic acid ethyl ester were found in the low-salt groups.The RDA analysis revealed that Lactococcus was closely related to product quality,with the S3F10(3%salt and 10%rice f lour)group outperforming the others in the sensory evaluation.Therefore,3%salt and 10%rice flour were considered more appropriate for the production of healthy and tasty fermented sour meats.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institution(PAPD).
文摘Lactic acid bacteria and coagulase-negative staphylococci play an important role in the production of fermented sausages,such as inhibiting the growth of undesirable bacteria and antioxidant.In this study,the effects of inoculation with different starter cultures(Lactiplantibacillus plantarum HN108 and Staphylococcus simulans NJ209)on the free amino acids(FAAs),biogenic amines(BAs)and volatile compounds of fermented sausages were investigated using an amino acid analyzer,ultra performance liquid chromatography and gas chromatography-ion mobility spectrometry,respectively.The pH and carbonyl content of the inoculated group was significantly lower than those in the control group(P<0.05).L.plantarum HN108 significantly reduced the content of FAAs and BAs in fermented sausage production(P<0.05),while S.simulans NJ209 promoted the formation of FAAs(especially bitter amino acids)and exhibited slight BAs-reducing activity.In addition,L.plantarum HN108 promoted the formation of volatile compounds such as ketones,alcohols and alkenes in sausages.In conclusion,L.plantarum HN108 could contribute to reducing the content of putrescine and tyramine and forming the desirable flavor compounds in fermented sausages.Thus,L.plantarum HN108 is expected to be a starter culture that can improve the safety and flavor of fermented sausages.
基金financially supported by the National Natural Science Foundation of China(32001728,32172248)the Taishan Industrial Experts Program+1 种基金the Guizhou High-level Innovative Talent Training Project(Qianke Cooperation Platform Talent number[2016]5662)Guizhou Science and Technology Innovation Talent Team of Ecological Characteristic Meat Products.(QKHPTRC[2020]5004)。
文摘Dry-cured meat products are considerably popular around the world due to unique flavor.Proteolysis is one of the enzymatic reactions from which flavor substances are derived,which is affected by endogenous proteases.The purpose aimed to reveal the potential relationship between endogenous proteases and key flavor substances in dry-cured pork coppa in this paper.The dynamic changes of endogenous proteases activity,free amino acids,and volatiles during dry-cured pork coppa processing were characterized.The results showed that 5 kinds of free amino acids,Glu,Lys,Val,Ala,and Leu,were identified as significant contributors to taste.Meanwhile,key volatiles,such as hexanal,nonanal,octanal,benzaldehyde,3-methyl butanoic acid,2-methyl propanoic acid,and ethyl octanoate,greatly contributed to the flavor characteristics of dry-cured pork coppa.Further partial correlation analysis was performed to better elucidate the relationship among parameters.The results revealed that close relationship between endogenous proteases and key substances.RAP not only significantly affected the accumulation of key active-amino acids,but also affected the accumulation of ethyl octanoate,2,3-pentanedione,and 2,3-octanedione by regulating the accumulation of octanoic acid and Leu.In addition,cathepsin B and D,DPP II,DPP IV and RAP notably affected accumulation of hexanal.
基金the financial support from the Scientific Research Program of Taiyuan University (23TYQN23)
文摘Volatile organic compounds(VOCs)are generally toxic and harmful substances that can cause health and environmental problems.The removal of VOCs from polymers has become a key problem.The effective devolatilization to remove VOCs from high viscous fluids such as polymer is necessary and is of great importance.In this study,the devolatilization effect of a rotating packed bed(RPB)was studied by using polydimethylsiloxane as the viscous fluid and acetone as the VOC.The devolatilization rate and liquid phase volume(KLa)have been evaluated.The results indicated that the optimum conditions were the high-gravity factor of 60,liquid flow rate of 10 L·h^(-1),and vacuum degree of 0.077 MPa.The dimensionless correlation of KLa was established,and the deviations between predicted and experimental values were less than±28%.The high-gravity technology will result in lower mass transfer resistance in the devolatilization process,enhance the mass transfer process of acetone,and improve the removal effect of acetone.This work provides a promising path for the removal of volatiles from polymers in combination with high-gravity technology.It can provide the basis for the application of RPB in viscous fluids.
基金financially supported by the National Natural Science Foundation of China(Grant No.21902046,21801071,12174092,U21A20500)Overseas Expertise Introduction Center for Discipline Innovation(D18025)+3 种基金the Natural Science Foundation of Hubei Provincial(Grant No.2018CFB171)Wuhan Science and Technology Bureau(2020010601012163)Science and Technology Research Project of Hubei Provincial Department of Education(No.D20221001)the open foundation of the State Key Laboratory of Structural Chemistry,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences
文摘Exploring high efficiency S-scheme heterojunction photocatalysts with strong redox ability for removing volatile organic compounds from the air is of great interest and importance.However,how to predict and regulate the transport of photogenerated carriers in heterojunctions is a great challenge.Here,density functional theory calculations were first used to successfully predict the formation of a CdS quantum dots/InVO_(4)atomic-layer(110)/(110)facet S-scheme heterojunction.Subsequently,a CdS quantum dots/InVO_(4)atomic-layer was synthesized by in-situ loading of CdS quantum dots with(110)facets onto the(110)facets of InVO_(4)atomic-layer.As a result of the deliberately constructed built-in electric field between the adjoining facets,we obtain a remarkably enhanced photocatalytic degradation rate for ethylene.This rate is 13.8 times that of pure CdS and 13.2 times that of pure InVO_(4).In-situ irradiated X-ray photoelectron spectroscopy,photoluminescence and time-resolved photoluminescence measurements were carried out.These experiments validate that the built-in electric field enhanced the dissociation of photoexcited excitons and the separation of free charge carriers,and results in the formation of S-scheme charge transfer pathways.The reaction mechanism of the photocatalytic C_(2)H_(4)oxidation is investigated by in-situ electron paramagnetic resonance.This work provides a mechanistic insight into the construction and optimization of semiconductor heterojunction photocatalysts for application to environmental remediation.
文摘Nipa palm is one of the non-wood plants rich in lignocellulosic content.In this study,palm fronds were converted into activated carbon,and their physical,chemical,and morphological properties were characterized.The resulting activated carbon was then applied as an adsorbent of Fe metal in peat water.The carbonization process was carried out for 60 min,followed by sintering at 400℃ for 5 h with a particle size of 200 mesh.KOH and H_(3)PO_(4) were used in the chemical activation process for 24 h.KOH-activated carbon contained 6.13%of moisture,4.55%of ash,17.02%of volatile matter,and 78.84%of fixed carbon,while its Fe reduction efficiency was 28.09%.The H_(3)PO_(4)-activated carbon contained 4.67%of moisture,2.84%of ash,16.41%of volatile matter,and 80.57%of bonded carbon,and the Fe reduction efficiency was 52.25%.KOH-activated carbon and H_(3)PO_(4)-activated carbon contained fixed carbon of 78.84%and 80.57%,respectively,while their average rates of efficiency of Fe reduction were 22.82%and 39.23%,respectively.Overall,the characteristics of activated nipa carbon met the Indonesian standards(SNI No.06-3730-1995).However,H_(3)PO_(4)-activated carbon was found to be better at adsorbing Fe metal from peat water.
文摘Recent decades have seen a concerning surge in carcinogenic diseases,with cancer cases and deaths on the rise globally.Conventional diagnostic methods are often invasive and time-consuming,highlighting the need for fast,accurate,and painless alternatives.Non-invasive exhaled breath analysis emerges as a promising solution,with over 200 volatile organic compounds(VOCs)detected in exhaled air,showing potential as biomarkers for various diseases,including cancer.Despite the lack of standardized methodologies,advancements in analytical instruments have expanded detection capabilities,reaching 3500 VOCs.Studies have identified specific VOC patterns associated with different cancers,offering hope for non-invasive diagnosis.Techniques such as gas chromatography-mass spectrometry and electronic noses show promise in distinguishing between healthy individuals and cancer patients.However,further research and standardization are needed to realize the full clinical potential of breath-based diagnostics,particularly in the early detection of challenging cancers like pancreatic cancer.
基金The study protocol was reviewed and approved by the Institutional Research Committee,Faculty of Medicine,Chulalongkorn University(No.0482/65)registered in the Thai Clinical Trials Registry(TCTR20211109002).
文摘BACKGROUND Volatile organic compounds(VOCs)are a promising potential biomarker that may be able to identify the presence of cancers.AIM To identify exhaled breath VOCs that distinguish pancreatic ductal adenocar-cinoma(PDAC)from intraductal papillary mucinous neoplasm(IPMN)and healthy volunteers.METHODS We collected exhaled breath from histologically proven PDAC patients,radiological diagnosis IPMN,and healthy volunteers using the ReCIVA®device between 10/2021-11/2022.VOCs were identified by thermal desorption-gas chromatography/field-asymmetric ion mobility spectrometry and compared between groups.RESULTS A total of 156 participants(44%male,mean age 62.6±10.6)were enrolled(54 PDAC,42 IPMN,and 60 controls).Among the nine VOCs identified,two VOCs that showed differences between groups were dimethyl sulfide[0.73 vs 0.74 vs 0.94 arbitrary units(AU),respectively;P=0.008]and acetone dimers(3.95 vs 4.49 vs 5.19 AU,respectively;P<0.001).After adjusting for the imbalance parameters,PDAC showed higher dimethyl sulfide levels than the control and IPMN groups,with adjusted odds ratio(aOR)of 6.98(95%CI:1.15-42.17)and 4.56(1.03-20.20),respectively(P<0.05 both).Acetone dimer levels were also higher in PDAC compared to controls and IPMN(aOR:5.12(1.80-14.57)and aOR:3.35(1.47-7.63),respectively(P<0.05 both).Acetone dimer,but not dimethyl sulfide,performed better than CA19-9 in PDAC diagnosis(AUROC 0.910 vs 0.796).The AUROC of acetone dimer increased to 0.936 when combined with CA19-9,which was better than CA19-9 alone(P<0.05).CONCLUSION Dimethyl sulfide and acetone dimer are VOCs that potentially distinguish PDAC from IPMN and healthy participants.Additional prospective studies are required to validate these findings.
基金the Deputyship for Research and Innovation,Ministry of Education in Saudi Arabia,for funding this research through Project Number 1/441/119.
文摘This study simplifies the complex relationship among grapevine plants,aphids,ladybirds,and ants,which is essential for effective pest management and ecological balance.This study investigated the impact of aphid attacks and the presence of ants and ladybirds on the volatile compounds profile released into the chemosphere of the community consisting of the common vine Vitis vinifera,the aphid Aphis illinoisensis,the ladybird Cocci-nella undecimpunctata-and the ant Tapinoma magnum.This study aims to analyze the volatile compounds emitted by the grapevine and surrounding insects in response to these intricate interactions.The extraction of volatile organic compounds(VOCs)was carried out using closed-loop stripping(CLS)and then analyzed via gas chromatography-mass spectrometry(GC-MS)and principles coordinated analysis(PCA)was performed.The grapevine was exposed to different types and order of treatments,including non-infested,aphid-infested,aphid-infested with ant,aphid-infested with ladybird,and various combinations of ant and ladybird.After the aphid attack,the outcomes uncovered massive alterations in the volatile compound profiles.Infested grapevine displayed distinct emissions of germacrene D,an alcohol,and an alkene compared to non-infested plants.The characteristic VOC profile was the share of infested grapes in the presence of ants,with benzene derivatives and sesquiterpenes dominating the components.The coexistence of ladybirds with ants and aphids resulted in a dif-ferent volatile profile characterized by elevated levels of aldehydes,ketones,α-farnesene,and its hydroxy deriva-tive.It was concluded that the emission of VOCs into the chemosphere of the grapevine communities varied qualitatively and quantitatively depending on the level of the relationship complexity within each community in response to the infestation of grapevines by aphids,the presence of ladybirds as natural predators,and the presence of ant as protector.The grapevine’s status-dependent compounds can serve as indicators of infestation status and contribute to non-destructive early-stage diagnosis of the aphid.
基金supported by the European Union in the MSCA4Ukraine Project“Design and Development of 3D-Printed Medicines for Bioactive Materials of Ukrainian and Estonian Medicinal Plants Origin”(ID Number 1232466).
文摘Valeriana officinalis L.is a plant from the Caprifoliaceae family,which is widely distributed in various parts of the world,especially in Europe and Asia.All species of Valeriana are distinguished by their ability to synthesize essen-tial oil,which has a powerful effect on the physiological and mental aspects of the human body.The aim was to study the qualitative and quantitative composition of essential oil from valerian roots,collected in different coun-tries,using the gas chromatography method,and to establish marker compounds for valerian species.13 samples of commercial roots with rhizomes of V.officinalis from nine countries of the world and a sample of Valeriana pratensis and Valeriana stolonifera growing in Ukraine were selected for the study.The essential oil was obtained from dried valerian roots by the distillation method described in the European Pharmacopoeia.To determine the component composition of the essential oils of the selected samples,the methods of gas chromatography with a mass spectrometric detector and capillary gas chromatography were used.The commercial samples of V.offici-nalis from different countries yielded 0.21%–1.03%of essential oil.Only six of 13 samples contained essential oil in an amount that satisfies the requirement of the European Pharmacopoeia standard(not less than 4 mL/kg).150 compounds were identified in the essential oils of 13 samples of V.officinalis essential oils.The range and average content and coefficients of variation of the identified compounds were determined.The principal com-pounds of V.officinalis essential oils were bornyl acetate(1.6%–27.1%),valeranone(0.5%–17.9%),valerenal(0%–14.7%),camphene(0%–14.6%),α-fenchene(0%–10.6%),and valerenic acid(0%–8.5%).The samples of V.pratensis and V.stolonifera yielded rather high levels of essential oil(1.18%and 0.93%,respectively).Three chemotypes of V.officinalis samples were determined-bornyl acetate/valerenal,valeranone,and isovaleric acid.The composition of the three essential oils compared was rather similar.Based on the study results,we propose the following marker compounds for V.officinalis consistently present in all 16 examined samples:bornyl acetate(1.6%–27.1%),limonene(0.2–2.3),and valeranone(0.5%–17.9%).The study of samples from Ukraine indicates the prospects of using these species of the genus Valeriana with the aim of expanding the raw material base and creating potential herbal preparations with a sedative effect,which are extremely necessary for the population of the country in the war and post-war periods.
基金funded by the National Natural Science Foundation of China(82260695)the Jiangxi Provincial Natural Science Foundation(20232ACB206062,20212ACB206004)+2 种基金Young Jinggang Scholar of Jiangxi Province and New Century Talents Project of Jiangxi Province(2017082,2020028)the Science and Technology Innovation Team of Jiangxi University of Chinese Medicine(CXTD22001,CXTD22006)Project of College Students’Innovation and Entrepreneurship Training Program of Jiangxi University of Chinese Medicine.
文摘Volatile oil(VO)is the main chemical component of common plants in Chrysanthemum genus,and it possesses several beneficial pharmacological properties,including bacteriostatic,antioxidant,anti-tumor,anti-inflammatory,antipyretic,analgesic,antiosteoporotic,antihypertensive,sedative,and hypnotic effects.To date,research on the effective components of Chrysanthemum extract has mainly focused on flavonoids,whereas limited data are available on the chemical constituents and underlying mechanisms of action of the VO components.In this review,the pharmacological activities and mechanisms of VO are comprehensively reviewed with the aim of providing a foundation for further development for medicinal,aromatherapy,and diet therapy applications.
基金the Yunnan Major Scientific and Technological Program(202202AE090035)Xingdian Yingcai Project(YNWR-QNBJ-2018-061)+2 种基金the Yunnan Fundamental Research Projects(202201AV070010,202301AS070069)Yunnan Province Science and Technology Department(202305AH340005)the Fund of State Key Laboratory of Phytochemistry and Plant Resources in West China(P2022-KF12).
文摘The fruits of Amomum tsao-ko(Cao-Guo)were documented in Chinese Pharmacopoeia for the treatment of abdominal pain,vomiting,and plague.In our previous study,a series of diarylheptanes and flavonoids withα-glucosidase and protein tyrosine phosphatase 1B(PTP1B)inhibitory activity have been reported from the middle-polarity part of A.tsao-ko,whereas the antidiabetic potency of the low-polarity constituents is still unclear.In this study,three new hydroxytetradecenals,(2E,4E,8Z,11Z)-6R-hydroxytetradeca-2,4,8,11-tetraenal(1),(2E,4E,8Z)-6R-hydroxytetradeca-2,4,8-trienal(2)and(2E,4E)-6R-hydroxytetradeca-2,4-dienal(3)were obtained from the volatile oils of A.tsao-ko.The structures of compounds 1–3 were determined using spectroscopic data involving 1D and 2D nuclear magnetic resonance(NMR),high-resolution mass spectra(HRMS),and specific rotation([α]D).Their hypoglycemic activity was evaluated against glycogen phosphorylase(GPa)and PTP1B.Compounds 1 and 2 displayed moderate activity against PTP1B with inhibition rates of 33.8%−50.3%at 100 and 200μM.Moreover,compound 1 exhibited an obvious inhibitory effect on GPa(IC50=31.7μM),whereas compound 2 was inactive.This study demonstrates hydroxytetradecenals as the characteristic components of A.tsao-ko with therapeutic potential in diabetes.