This paper describes a novel time domain noise model for voltage controlled oscillators that accurately and efficiently predicts both tuning behavior and phase noise performance. The proposed method is based on device...This paper describes a novel time domain noise model for voltage controlled oscillators that accurately and efficiently predicts both tuning behavior and phase noise performance. The proposed method is based on device level flicker and thermal noise models that have been developed in Simulink and although the case study is a multiple feedback four delay cell architecture it could easily be extended to any similar topology. The strength of the approach is verified through comparison with post layout simulation results from a commercial simulator and measured results from a 120 nm fabricated prototype chip. Furthermore, the effect of control voltage flicker noise on oscillator output phase noise is also investigated as an example application of the model. Transient simulation based noise analysis has the strong advantage that noise performance of higher level systems such as phase locked loops can be easily determined over a realistic acquisition and locking process yielding more accurate and reliable results.展开更多
A configuration using current feedback amplifiers AD844 and multiplier AD534 has been presented, which is capable of realizing Voltage Controlled Floating Inductance (proportional and in-verse proportional). The appli...A configuration using current feedback amplifiers AD844 and multiplier AD534 has been presented, which is capable of realizing Voltage Controlled Floating Inductance (proportional and in-verse proportional). The application of band pass filter in Figure 4(a), notch filter in Figure 5(a) and Hartley oscillator in Figure 6(a) and simulation result in Figures 4(b)-(d), Figures 5(b)-(d), Figures 6(b)-(d) shows the workability of proposed configuration.展开更多
A new configuration for delay cells used in voltage controlled oscillators is presented. A jitter comparison between the source-coupled differential delay cell and the proposed CMOS inverter based delay cell is given....A new configuration for delay cells used in voltage controlled oscillators is presented. A jitter comparison between the source-coupled differential delay cell and the proposed CMOS inverter based delay cell is given. A new method to optimize loop parameters based on low-jitter in PLL is also introduced. A low-jitter 1.25GHz Serdes is implemented in a 0.35μm standard 2P3M CMOS process. The result shows that the RJ (random jitter) RMS of 1.25GHz data rate series output is 2. 3ps (0. 0015UI) and RJ (1 sigma) is 0. 0035UI. A phase noise measurement shows - 120dBc/Hz@100kHz at 1111100000 clock-pattern data out.展开更多
By jitter performance comparison between PLL (Phase Locked Loop) and DLL (Delay Locked Loop),a helpful equation is derived for the structure choice between DLL and PLL based synthesizers fabricated in CMOS processes ...By jitter performance comparison between PLL (Phase Locked Loop) and DLL (Delay Locked Loop),a helpful equation is derived for the structure choice between DLL and PLL based synthesizers fabricated in CMOS processes to get an optimum jitter performance and power consumption.For a frequency synthesizer,a large multiple factor prefers PLL based configuration which consumes less power,while a small one needs DLL based topology which produces a better jitter performance.展开更多
In complementary metal oxide semiconductor (CMOS) nanoscalc technology, power dissipation is becoming important metric. In this work low leakage voltage controlled ring oscillator circuit system was proposed for cri...In complementary metal oxide semiconductor (CMOS) nanoscalc technology, power dissipation is becoming important metric. In this work low leakage voltage controlled ring oscillator circuit system was proposed for critical communication systems with high oscillation frequency. An ideal approach has been presented with substrate biasing technique for reduction of power consumption. The simulation have been completed using cadence virtuoso 45 nm standard CMOS technology at room temperature 27~C with supply voltage Vc^d = 0.7 V. The simulation results suggest that voltage controlled ring oscillator has characterized with efficient low power voltage controlled oscillator (VCO) in term of minimum leakage power (1.23 nW) and maximum oscilla- tion frequency (4.76 GHz) with joint positive channel metal oxide semiconductor and negative channel metal oxide semiconductor (PMOS and NMOS) reverse sub- strate bias technique. PMOS, NMOS and joint reverse body bias techniques have been compared in the presented work.展开更多
This paper proposes an efficient PSP-based model for cross-coupled metal-oxide-semiconductor field-effect transistors(MOSFETs) with optimized layout in the voltage controlled oscillator(VCO).The model employs a PSP ch...This paper proposes an efficient PSP-based model for cross-coupled metal-oxide-semiconductor field-effect transistors(MOSFETs) with optimized layout in the voltage controlled oscillator(VCO).The model employs a PSP charge model to characterize the bias-dependent extrinsic capacitance instead of numerical functions with strong non-linearity.The simulation convergence is greatly improved by this method.An original scheme is developed to extract the parameters of the PSP charge model based on S-parameters measurement.The interconnection parasitics of the cross-coupled MOSFETs are modeled based on vector fitting.The model is verified with an LC VCO design,and exhibits excellent convergence during simulation.The results show improvements as high as 60.5% and 61.8% in simulation efficiency and accuracy,respectively,indicating that the proposed model better characterizes optimized cross-coupled MOSFETs in advanced radio frequency(RF) circuit design.展开更多
An innovative solution to design phase and quadrature pulsed coupled oscillators systems through electromagnetic waveguides is described in this paper. Each oscillator is constituted by an LC differential resonator re...An innovative solution to design phase and quadrature pulsed coupled oscillators systems through electromagnetic waveguides is described in this paper. Each oscillator is constituted by an LC differential resonator refilled through a couple of current pulse generator circuits. The phase and quadrature coupling between the two differential oscillators is achieved using delayed replicas of generated fundamentals from a resonator as driving signal of pulse generator injecting in the other resonator. The delayed replicas are obtained by microstrip-based delay-lines. A 2.4 - 2.5 GHz VCO has been implemented in a 150 nm RF CMOS process. Simulations showed at 1 MHz offset a phase noise of -139.9 dBc/Hz and a FOM of -189.1 dB.展开更多
A novel micromechanical bridge-shaped voltage-controlled oscillator with high Q value was fabricated. The core of this kind of oscillators is an electrothermally excited and piezoresistively detected micromechanical b...A novel micromechanical bridge-shaped voltage-controlled oscillator with high Q value was fabricated. The core of this kind of oscillators is an electrothermally excited and piezoresistively detected micromechanical bridge resonator. Its resonance frequency can be adjusted by changing the DC voltage applied to the Wheatstone bridge. Theoretical analysis and experimental data show that its resonance frequency is linear with the square of the DC voltage. The linearity is better than 0.16% and the adjustable frequency range excels 17.15%.展开更多
The oscillation phenomena associated with the control of voltage source converters(VSCs)are concerning,making it crucial to locate the sources of such oscillations and suppress the oscillations.Therefore,this paper pr...The oscillation phenomena associated with the control of voltage source converters(VSCs)are concerning,making it crucial to locate the sources of such oscillations and suppress the oscillations.Therefore,this paper presents a location scheme based on the energy structure and nonlinearity detection.The energy structure,which conforms to the principle of the energy-based method and dissipativity theory,is developed to describe the transient energy flow for VSCs,based on which a defined characteristic quantity is implemented to narrow the scope for locating the sources of oscillations.Moreover,based on the self-sustained oscillation characteristics of VsCs,an index for nonlinearity detection is applied to locate the VSCs that produce the oscillation energy.The combination of the energy structure and nonlinearity detection distinguishes the contribu-tions of different VSCs to the oscillation.The results of a case study implemented by the PSCAD/EMTDC simulation validate theproposed scheme.展开更多
A wideband LC cross-coupled voltage controlled oscillator(VCO) is designed and realized with standard 0. 18 μm complementary metal-oxide-semiconductor(CMOS) technology. Band switching capacitors are adopted to ex...A wideband LC cross-coupled voltage controlled oscillator(VCO) is designed and realized with standard 0. 18 μm complementary metal-oxide-semiconductor(CMOS) technology. Band switching capacitors are adopted to extend the frequency tuning range, and the phase noise is optimized in the design procedure. The functional relationships between the phase noise and the transistors' width-length ratios are deduced by a linear time variant (LTV) model. The theoretical optimized parameter value ranges are determined. To simplify the calculation, the working region is split into several sub-ranges according to transistor working conditions. Thus, a lot of integrations are avoided, and the phase noise function upon the design variables can be expressed as simple proportion formats. Test results show that the DC current is 8.8 mA under a voltage supply of 1.8 V; the frequency range is 1.17 to 1.90 GHz, and the phase noise reaches - 83 dBc/Hz at a 10 kHz offset from the carrier. The chip size is 1. 2 mm × 0. 9 mm.展开更多
This work summarizes the structure and operating features of a high-performance 3-stage dual-delay-path (DDP) voltage-controlled ring oscillator (VCRO) with self-biased delay cells for Phase-Locked Loop (PLL) structur...This work summarizes the structure and operating features of a high-performance 3-stage dual-delay-path (DDP) voltage-controlled ring oscillator (VCRO) with self-biased delay cells for Phase-Locked Loop (PLL) structurebased clock generation and digital system driving. For a voltage supply V<sub>DD</sub> = 1.8 V, the resulting set of performance parameters include power consumption P<sub><sub></sub>DC</sub> = 4.68 mW and phase noise PN@1MHz = -107.8 dBc/Hz. From the trade-off involving P<sub>DC</sub> and PN, a system level high performance is obtained considering a reference figure-of-merit ( FoM = -224 dBc/Hz ). Implemented at schematic level by applying CMOS-based technology (UMC L180), the proposed VCRO was designed at Cadence environment and optimized at MunEDA WiCkeD tool.展开更多
文摘This paper describes a novel time domain noise model for voltage controlled oscillators that accurately and efficiently predicts both tuning behavior and phase noise performance. The proposed method is based on device level flicker and thermal noise models that have been developed in Simulink and although the case study is a multiple feedback four delay cell architecture it could easily be extended to any similar topology. The strength of the approach is verified through comparison with post layout simulation results from a commercial simulator and measured results from a 120 nm fabricated prototype chip. Furthermore, the effect of control voltage flicker noise on oscillator output phase noise is also investigated as an example application of the model. Transient simulation based noise analysis has the strong advantage that noise performance of higher level systems such as phase locked loops can be easily determined over a realistic acquisition and locking process yielding more accurate and reliable results.
文摘A configuration using current feedback amplifiers AD844 and multiplier AD534 has been presented, which is capable of realizing Voltage Controlled Floating Inductance (proportional and in-verse proportional). The application of band pass filter in Figure 4(a), notch filter in Figure 5(a) and Hartley oscillator in Figure 6(a) and simulation result in Figures 4(b)-(d), Figures 5(b)-(d), Figures 6(b)-(d) shows the workability of proposed configuration.
文摘A new configuration for delay cells used in voltage controlled oscillators is presented. A jitter comparison between the source-coupled differential delay cell and the proposed CMOS inverter based delay cell is given. A new method to optimize loop parameters based on low-jitter in PLL is also introduced. A low-jitter 1.25GHz Serdes is implemented in a 0.35μm standard 2P3M CMOS process. The result shows that the RJ (random jitter) RMS of 1.25GHz data rate series output is 2. 3ps (0. 0015UI) and RJ (1 sigma) is 0. 0035UI. A phase noise measurement shows - 120dBc/Hz@100kHz at 1111100000 clock-pattern data out.
文摘By jitter performance comparison between PLL (Phase Locked Loop) and DLL (Delay Locked Loop),a helpful equation is derived for the structure choice between DLL and PLL based synthesizers fabricated in CMOS processes to get an optimum jitter performance and power consumption.For a frequency synthesizer,a large multiple factor prefers PLL based configuration which consumes less power,while a small one needs DLL based topology which produces a better jitter performance.
文摘In complementary metal oxide semiconductor (CMOS) nanoscalc technology, power dissipation is becoming important metric. In this work low leakage voltage controlled ring oscillator circuit system was proposed for critical communication systems with high oscillation frequency. An ideal approach has been presented with substrate biasing technique for reduction of power consumption. The simulation have been completed using cadence virtuoso 45 nm standard CMOS technology at room temperature 27~C with supply voltage Vc^d = 0.7 V. The simulation results suggest that voltage controlled ring oscillator has characterized with efficient low power voltage controlled oscillator (VCO) in term of minimum leakage power (1.23 nW) and maximum oscilla- tion frequency (4.76 GHz) with joint positive channel metal oxide semiconductor and negative channel metal oxide semiconductor (PMOS and NMOS) reverse sub- strate bias technique. PMOS, NMOS and joint reverse body bias techniques have been compared in the presented work.
基金Project supported by the National Basic Research Program (973) of China (No. 2010CB327403)the National Natural Science Foundation of China (Nos. 61001066 and 61102027)
文摘This paper proposes an efficient PSP-based model for cross-coupled metal-oxide-semiconductor field-effect transistors(MOSFETs) with optimized layout in the voltage controlled oscillator(VCO).The model employs a PSP charge model to characterize the bias-dependent extrinsic capacitance instead of numerical functions with strong non-linearity.The simulation convergence is greatly improved by this method.An original scheme is developed to extract the parameters of the PSP charge model based on S-parameters measurement.The interconnection parasitics of the cross-coupled MOSFETs are modeled based on vector fitting.The model is verified with an LC VCO design,and exhibits excellent convergence during simulation.The results show improvements as high as 60.5% and 61.8% in simulation efficiency and accuracy,respectively,indicating that the proposed model better characterizes optimized cross-coupled MOSFETs in advanced radio frequency(RF) circuit design.
文摘An innovative solution to design phase and quadrature pulsed coupled oscillators systems through electromagnetic waveguides is described in this paper. Each oscillator is constituted by an LC differential resonator refilled through a couple of current pulse generator circuits. The phase and quadrature coupling between the two differential oscillators is achieved using delayed replicas of generated fundamentals from a resonator as driving signal of pulse generator injecting in the other resonator. The delayed replicas are obtained by microstrip-based delay-lines. A 2.4 - 2.5 GHz VCO has been implemented in a 150 nm RF CMOS process. Simulations showed at 1 MHz offset a phase noise of -139.9 dBc/Hz and a FOM of -189.1 dB.
基金This work supported by the National Natural Science Foundation of China(Grant No.60036016)by National 863 Project of China under Grant No.2001AA313090.
文摘A novel micromechanical bridge-shaped voltage-controlled oscillator with high Q value was fabricated. The core of this kind of oscillators is an electrothermally excited and piezoresistively detected micromechanical bridge resonator. Its resonance frequency can be adjusted by changing the DC voltage applied to the Wheatstone bridge. Theoretical analysis and experimental data show that its resonance frequency is linear with the square of the DC voltage. The linearity is better than 0.16% and the adjustable frequency range excels 17.15%.
基金supported by the State Grid Guide Project(No.5108-202218030A-1-1-ZN).
文摘The oscillation phenomena associated with the control of voltage source converters(VSCs)are concerning,making it crucial to locate the sources of such oscillations and suppress the oscillations.Therefore,this paper presents a location scheme based on the energy structure and nonlinearity detection.The energy structure,which conforms to the principle of the energy-based method and dissipativity theory,is developed to describe the transient energy flow for VSCs,based on which a defined characteristic quantity is implemented to narrow the scope for locating the sources of oscillations.Moreover,based on the self-sustained oscillation characteristics of VsCs,an index for nonlinearity detection is applied to locate the VSCs that produce the oscillation energy.The combination of the energy structure and nonlinearity detection distinguishes the contribu-tions of different VSCs to the oscillation.The results of a case study implemented by the PSCAD/EMTDC simulation validate theproposed scheme.
文摘A wideband LC cross-coupled voltage controlled oscillator(VCO) is designed and realized with standard 0. 18 μm complementary metal-oxide-semiconductor(CMOS) technology. Band switching capacitors are adopted to extend the frequency tuning range, and the phase noise is optimized in the design procedure. The functional relationships between the phase noise and the transistors' width-length ratios are deduced by a linear time variant (LTV) model. The theoretical optimized parameter value ranges are determined. To simplify the calculation, the working region is split into several sub-ranges according to transistor working conditions. Thus, a lot of integrations are avoided, and the phase noise function upon the design variables can be expressed as simple proportion formats. Test results show that the DC current is 8.8 mA under a voltage supply of 1.8 V; the frequency range is 1.17 to 1.90 GHz, and the phase noise reaches - 83 dBc/Hz at a 10 kHz offset from the carrier. The chip size is 1. 2 mm × 0. 9 mm.
文摘This work summarizes the structure and operating features of a high-performance 3-stage dual-delay-path (DDP) voltage-controlled ring oscillator (VCRO) with self-biased delay cells for Phase-Locked Loop (PLL) structurebased clock generation and digital system driving. For a voltage supply V<sub>DD</sub> = 1.8 V, the resulting set of performance parameters include power consumption P<sub><sub></sub>DC</sub> = 4.68 mW and phase noise PN@1MHz = -107.8 dBc/Hz. From the trade-off involving P<sub>DC</sub> and PN, a system level high performance is obtained considering a reference figure-of-merit ( FoM = -224 dBc/Hz ). Implemented at schematic level by applying CMOS-based technology (UMC L180), the proposed VCRO was designed at Cadence environment and optimized at MunEDA WiCkeD tool.