In the past two decades,a lot of high-capacity conversion-type metal oxides have been intensively studied as alternative anode materials for Li-ion batteries with higher energy density.Unfortunately,their large voltag...In the past two decades,a lot of high-capacity conversion-type metal oxides have been intensively studied as alternative anode materials for Li-ion batteries with higher energy density.Unfortunately,their large voltage hysteresis(0.8-1.2 V) within reversed conversion reactions results in huge round-trip inefficiencies and thus lower energy efficiency(50%-75%) in full cells than those with graphite anodes.This remains a long-term open question and has been the most serious drawback toward application of metal oxide anodes.Here we clarify the origins of voltage hysteresis in the typical SnO2anode and propose a universal strategy to minimize it.With the established in situ phosphating to generate metal phosphates during reversed conversion reactions in synergy with boosted reaction kinetics by the added P and Mo,the huge voltage hysteresis of 0.9 V in SnO_(2),SnO_(2)-Mo,and 0.6 V in SnO2-P anodes is minimized to 0.3 V in a ternary SnO_(2)-Mo-P(SOMP) composite,along with stable high capacity of 936 mA h g^(-1)after 800 cycles.The small voltage hysteresis can remain stable even the SOMP anode operated at high current rate of10 A g^(-1)and wide-range temperatures from 60 to 30℃,resulting in a high energy efficiency of88.5% in full cells.This effective strategy to minimize voltage hysteresis has also been demonstrated in Fe2O3,Co3O4-basded conversion-type anodes.This work provides important guidance to advance the high-capacity metal oxide anodes from laboratory to industrialization.展开更多
An on-chip voltage reference with a wide supply voltage range is required by some applications,especially that of power management (PM) controller chips applied to telecommunication, automotive, lighting equipment, ...An on-chip voltage reference with a wide supply voltage range is required by some applications,especially that of power management (PM) controller chips applied to telecommunication, automotive, lighting equipment, etc., when high power supply voltage is needed. Accordingly,a new bandgap reference with a wide supply voltage range is proposed. Due to the improved structure,it features a high power supply rejection ratio (PSRR) and high temperature stability. In addition, an auxiliary micro-power reference is introduced to support the sleep mode of the PM chip and reduce its standby power consumption. The auxiliary reference provides bias currents in normal mode and a 1.28V reference voltage in sleep mode to replace the main reference and save power. Simulation results show that the reference provides a reference volt- age of 1.27V,which has a 3.5mV drift over the temperature range from -20 to 120~C and 56t^V deviation over a supply voltage range from 3 to 40V. The PSRR is higher than 100dB for frequency below 10kHz. The circuit was completed in 1.5tzm BCD (Bipolar-CMOS-DMOS) technology. The experimental results show that all main expectations are achieved.展开更多
A novel performance model of losses of pump was presented,which allows an explicit insight into the losses of various friction pairs of pump.The aim is to clarify that to what extent the hydro-mechanical losses affect...A novel performance model of losses of pump was presented,which allows an explicit insight into the losses of various friction pairs of pump.The aim is to clarify that to what extent the hydro-mechanical losses affect efficiency,and to further gain an insight into the variation and distribution characteristics of hydro-mechanical losses over wide operating ranges.A good agreement is found in the comparisons between simulation and experimental results.At rated speed,the hydro-mechanical losses take a proportion ranging from 87% to 89% and from 68% to 97%,respectively,of the total power losses of pump working under 5 MPa pressure conditions,and 13% of full displacement conditions.Furthermore,within the variation of speed ranging from 48% to 100% of rated speed,and pressure ranging from 14% to 100% of rated pressure,the main sources of hydro-mechanical losses change to slipper swash plate pair and valve plate cylinder pair at low displacement conditions,from the piston cylinder pair and slipper swash plate pair at full displacement conditions.Besides,the hydro-mechanical losses in ball guide retainer pair are found to be almost independent of pressure.The derived conclusions clarify the main orientations of efforts to improve the efficiency performance of pump,and the proposed model can service for the design of pump with higher efficiency performance.展开更多
CdSe quantum dot sensitized solar cells (QDSCs) modified with graphene quantum dots (GQDs) have been successfully achieved in this work for the first time. Satisfactorily, the optimized photovoltage (Voc) of the...CdSe quantum dot sensitized solar cells (QDSCs) modified with graphene quantum dots (GQDs) have been successfully achieved in this work for the first time. Satisfactorily, the optimized photovoltage (Voc) of the modified QDSCs was approximately 0.04 V higher than that of plain CdSe QDSCs, consequently improving the photovoltaic performance of the resulting QDSCs. Served as a novel coating on the CdSe QD sensitized photoanode, GQDs played a vital role in improving Voc due to the suppressed charge recombination which has been confirmed by electron impedance spectroscopy as well as transient photovoltage decay measure- ments. Moreover, different adsorption sequences, concentration and deposition time of GQDs have also been systematically investigated to boost the power conversion efficiency (PCE) of CdSe QDSCs. After the coating of CdSe with GQDs, the resulting champion CdSe QDSCs exhibited an improved PCE of 6.59% under AM 1.5G full one sun illumination.展开更多
We present a new method of making a textured V-pit surface for improving the light extraction efficiency in GaN- based light-emitting diodes and compare it with the usual low-temperature method for p-GaN V-pits. Three...We present a new method of making a textured V-pit surface for improving the light extraction efficiency in GaN- based light-emitting diodes and compare it with the usual low-temperature method for p-GaN V-pits. Three types of GaNbased light-emitting diodes (LEDs) with surface V-pits in different densities and regions were grown by metal-organic chemical vapor deposition. We achieved the highest output power and lowest forward voltage values with the p-InGaN V-pit LED. The V-pits enhanced the light output power values by 1.45 times the values of the conventional LED owing to an enhancement of the light scattering probability and an effective reduction of Mg-acceptor activation energy. Moreover, this new technique effectively solved the higher forward voltage problem of the usual V-pit LED.展开更多
High Efficiency Video Coding (HEVC) is the latest international video coding standard, which can provide the similar quality with about half bandwidth compared with its predecessor, H.264/MPEG?4 AVC. To meet the requi...High Efficiency Video Coding (HEVC) is the latest international video coding standard, which can provide the similar quality with about half bandwidth compared with its predecessor, H.264/MPEG?4 AVC. To meet the requirement of higher bit depth coding and more chroma sampling formats, range extensions of HEVC were developed. This paper introduces the coding tools in HEVC range extensions and provides experimental results to compare HEVC range extensions with previous video coding standards. Ex?perimental results show that HEVC range extensions improve coding efficiency much over H.264/MPEG?4 AVC High Predictive profile, especially for 4K sequences.展开更多
To realize effective utilization of renewable energy sources,a novel polymorphic topology with hybrid control strategy based LLC resonant converter was analyzed and designed in this paper.By combining the merits of a ...To realize effective utilization of renewable energy sources,a novel polymorphic topology with hybrid control strategy based LLC resonant converter was analyzed and designed in this paper.By combining the merits of a full bridge LLC resonant converter,three-level half bridge LLC resonant converter,and variable frequency control mode,the converter realizes an intelligent estimation of input voltage by automatically changing its internal cir-cuit topology.Under this control strategy,different input voltages determine different operation modes.This is achieved in full bridge LLC mode when the input voltage is low.If the input voltage rises to a certain level,it operates in three-level half bridge LLC mode.These switches are digital and entirely carried out by the DSP(Digi-tal Signal Processor),which means that an auxiliary circuit is unnecessary,where a simple strategy of software modification can be utilized.Experimental results of a 500W prototype with 100V~600V input voltage and full load efficiency of up to 92%are developed to verify feasibility and practicability.This type of converter is suitable for applications with an ultra-wide input voltage range,such as wind turbines,photovoltaic generators,bioenergy,and other renewable energy sources.展开更多
This paper describes how the power efficiency of fully integrated Dickson charge pumps in high- voltage IC technologies can be improved considerably by implementing charge recycling techniques, by replacing the normal...This paper describes how the power efficiency of fully integrated Dickson charge pumps in high- voltage IC technologies can be improved considerably by implementing charge recycling techniques, by replacing the normal PN junction diodes by pulse-driven active diodes, and by choosing an appropriate advanced smart power IC technology. A detailed analysis reveals that the combination of these 3 methods more than doubles the power efficiency compared to traditional Dickson charge pump designs.展开更多
A high efficiency LED(Light Emitting Diode) driver based on Buck converter, which could operate under a wide AC input voltage range(85V^265V) and drive a series of high power LEDs, is presented in this paper. The oper...A high efficiency LED(Light Emitting Diode) driver based on Buck converter, which could operate under a wide AC input voltage range(85V^265V) and drive a series of high power LEDs, is presented in this paper. The operation principles, power loss factors of the LED driver in this study are analyzed and discussed in detail and some effective ways to improve efficiency are proposed through system design considerations. To verify the feasibility, a laboratory prototype is also designed and tested for an LED lamp which consists of 16 LUMILEDS LEDs in series. Experimental results show that a high efficiency of 92% at I0=350mA can be achieved and the studied driver might be practical for driving high power LEDs. In the last, the overall efficiency over 90% is gained through some experiments under variable input and output voltages and verifies the validity of the designed driver.展开更多
This paper presents a 1.8 GHz class-E controlled power amplifier (PA). The proposed power amplifier is designed with two-stage architecture. The main advantage of the proposed technique for output control power is a h...This paper presents a 1.8 GHz class-E controlled power amplifier (PA). The proposed power amplifier is designed with two-stage architecture. The main advantage of the proposed technique for output control power is a high 37 dB output power dynamic range with good average power adding efficiency. The measurement results show that the PA achieves a high power gain of 23 dBm and power added efficiency (PAE) by 38%. The circuit was post layout simulated in a standard 0.18 μm CMOS technology.展开更多
Li-rich Mn-based oxides(LRMOs)hold great promise as next-generation cathode materials for high-energy Li-ion batteries because of their low cost and high capacity.Nevertheless,the practical application of LRMOs is imp...Li-rich Mn-based oxides(LRMOs)hold great promise as next-generation cathode materials for high-energy Li-ion batteries because of their low cost and high capacity.Nevertheless,the practical application of LRMOs is impeded by their low initial Coulombic efficiency and rapid voltage decay.Herein,a V-doped layered-spinel coherent layer is constructed on the surface of a Co-free LRMO through a simple treatment with NH_(4)VO_(3).The layered-spinel coherent layer with 3D ion channels enhanced Li+diffusion efficiency,mitigates surface-inter-face reactions and suppresses irreversible oxygen release.Notably,V-doping significantly reduces the Bader charge of oxygen atoms,thereby impeding excessive oxidation of oxygen ions and further enhancing the stability of O-redox.The modified LRMO exhibites a remarkable initial Coulombic efficiency of 91.6%,signifi-cantly surpassing that of the original LRMO(74.4%).Furthermore,the treated sample showes an impressive capacity retention rate of 91.9%after 200 cycles,accompanied by a voltage decay of merely 0.47 mV per cycle.The proposed treatment approach is straightforward and significantly improves the initial Coulombic efficiency,voltage stability,and capacity stability of LRMO cathode materials,thus holding considerable promise for the development of high-energy Li-ion batteries.展开更多
The solar energy conversion system is very interesting alternative on supplement the electric system generation, due to the persistent cost reduction of the overall system and cleaner power generation. To obtain a sta...The solar energy conversion system is very interesting alternative on supplement the electric system generation, due to the persistent cost reduction of the overall system and cleaner power generation. To obtain a stable voltage from an input supply (PV cells) that is higher and lower than the output, a high efficiency and minimum ripple DC-DC converter required in the system for residential power production. Buck-boost converters make it possible to efficiently convert a DC voltage to either a lower or higher voltages. Buck-boost converters are especially useful for PV maximum power tracking purposes, where the objective is to draw maximum possible power from solar panels at all times, regardless of the load. This paper analyzes and describes step by step the process of designing, and simulation of high efficiency low ripple voltage buck-boost DC-DC converter for the photovoltaic solar conversion system applicable to a (typical) single family home based on battery-based systems. The input voltage can typically change from (20 V) initially, down to (5 V), and provide a regulated voltage within the range of the battery (12 V). PLECS simulation results provide strong evidences about the high efficiency, minimum ripple voltage, high accuracy, and the usefulness of the system of the proposed converter when applied to either residential or solar home applications.展开更多
This paper presents a detailed study of square reflect array (RA) antenna aperture efficiency (ηa). Effects of quantization-phase and limited phase-range errors on radiation pattern, half-power beam width (HPBW) and ...This paper presents a detailed study of square reflect array (RA) antenna aperture efficiency (ηa). Effects of quantization-phase and limited phase-range errors on radiation pattern, half-power beam width (HPBW) and ηa for different feed locations are investigated. Results show an in-crease in side-lobe levels (SLLs) and a slightly reduction in ηa with quantization-phase augmentation or element phase-range reduction, however, the effects on HPBW are negligible. Nevertheless, the degradation in ηa is negligible when the quantization-phase is lower than 30° or phase-range is more than 300°. Parametric studies have been carried out to provide design guidelines to maximize ηa. It is perceived that the offset-angle plays an important role to determine ηa, especially for feed with narrow beam width.展开更多
In the Metals Industry,interruption-free processes to produce high-quality end products are a prerequisite. The main drives together with the mill stands play a key role in the success of rolling mills.The crucial dem...In the Metals Industry,interruption-free processes to produce high-quality end products are a prerequisite. The main drives together with the mill stands play a key role in the success of rolling mills.The crucial demands placed on the drive system are:high-dynamic performance of drive and its control system,ability to handle the process related overloads,smooth running,high availability,high efficiency,easy serviceability and ability to integrate seamlessly with the automation systems.With numerous reference installations and many years of experience Siemens VAI has the wider expertise and the portfolio to provide the right drive for every application. This paper examines the latest innovation,SINAMICS drive technology,for both new drive applications as well as for modernizing the existing drives in rolling mill applications like hot strips mills,plate mills,cold rolling mills,and long rolling mills.展开更多
We present and propose a complete and iterative integrated-circuit and electro-magnetic(EM) co-design methodology and procedure for a low-voltage sub-1 GHz class-E PA.The presented class-E PA consists of the onchip ...We present and propose a complete and iterative integrated-circuit and electro-magnetic(EM) co-design methodology and procedure for a low-voltage sub-1 GHz class-E PA.The presented class-E PA consists of the onchip power transistor,the on-chip gate driving circuits,the off-chip tunable LC load network and the off-chip LC ladder low pass filter.The design methodology includes an explicit design equation based circuit components values' analysis and numerical derivation,output power targeted transistor size and low pass filter design,and power efficiency oriented design optimization.The proposed design procedure includes the power efficiency oriented LC network tuning,the detailed circuit/EM co-simulation plan on integrated circuit level,package level and PCB level to ensure an accurate simulation to measurement match and first pass design success.The proposed PA is targeted to achieve more than 15 dBm output power delivery and 40% power efficiency at 433 MHz frequency band with 1.5 V low voltage supply.The LC load network is designed to be off-chip for the purpose of easy tuning and optimization.The same circuit can be extended to all sub-1 GHz applications with the same tuning and optimization on the load network at different frequencies.The amplifier is implemented in 0.13 μm CMOS technology with a core area occupation of 400 μm by 300 μm.Measurement results showed that it provided power delivery of 16.42 dBm at antenna with efficiency of 40.6%.A harmonics suppression of 44 dBc is achieved,making it suitable for massive deployment of IoT devices.展开更多
In recent years,switched inductor(SL)technology,switched capacitor(SC)technology,and switched inductor-capacitor(SL-SC)technology have been widely applied to optimize and improve DC-DC boost converters,which can effec...In recent years,switched inductor(SL)technology,switched capacitor(SC)technology,and switched inductor-capacitor(SL-SC)technology have been widely applied to optimize and improve DC-DC boost converters,which can effectively enhance voltage gain and reduce device stress.To address the issue of low output voltage in current renewable energy power generation systems,this study proposes a novel non-isolated cubic high-gain DC-DC converter based on the traditional quadratic DC-DC boost converter by incorporating a SC and a SL-SC unit.Firstly,the proposed converter’s details are elaborated,including its topology structure,operating mode,voltage gain,device stress,and power loss.Subsequently,a comparative analysis is conducted on the voltage gain and device stress between the proposed converter and other high-gain converters.Then,a closed-loop simulation system is constructed to obtain simulation waveforms of various devices and explore the dynamic performance.Finally,an experimental prototype is built,experimental waveforms are obtained,and the experimental dynamic performance and conversion efficiency are analyzed.The theoretical analysis’s correctness is verified through simulation and experimental results.The proposed converter has advantages such as high voltage gain,low device stress,high conversion efficiency,simple control,and wide input voltage range,achieving a good balance between voltage gain,device stress,and power loss.The proposed converter is well-suited for renewable energy systems and holds theoretical significance and practical value in renewable energy applications.It provides an effective solution to the issue of low output voltage in renewable energy power generation systems.展开更多
This paper proposes a new variable-mode control strategy that is applicable for LLC resonant converters operating in a wide input voltage range. This control strategy incorporates advantages from full-bridge LLC reson...This paper proposes a new variable-mode control strategy that is applicable for LLC resonant converters operating in a wide input voltage range. This control strategy incorporates advantages from full-bridge LLC resonant converters, half-bridge LLC resonant converters, variable-frequency control mode, and phase-shift control mode. Under this control strategy, different input voltages determine the different operating modes of the circuit. When the input voltage is very low, it works in a full-bridge circuit and variable frequency mode(FB_VF mode). When the input voltage rises to a certain level, it shifts to a full-bridge circuit and phase-shifting control mode(FB_PS mode). When the input voltage further increases, it shifts into a half-bridge circuit and variable frequency mode(HB_VF mode). Such shifts are enabled by the digital signal processor(DSP), which means that no auxiliary circuit is needed, just a modification of the software. From light load to heavy load, the primary MOSFET for the LLC resonant converter can realize zero-voltage switching(ZVS), and the secondary rectifier diode can realize zero-current switching(ZCS). With an LLC resonant converter prototype with a 300 W rated power and a 450 V output voltage, as well as a resonant converter with 20–120 V input voltage, the experiments verified the proposed control strategy. Experimental results showed that under this control strategy, the maximum converter efficiency reaches 95.7% and the range of the input voltage expands threefold.展开更多
This paper presents a low power and high efficiency high voltage generator circuit embedded in electrically erasable programmable read-only memory(EEPROM).The low power is minimized by a capacitance divider circuit ...This paper presents a low power and high efficiency high voltage generator circuit embedded in electrically erasable programmable read-only memory(EEPROM).The low power is minimized by a capacitance divider circuit and a regulator circuit using the controlling clock switch technique.The high efficiency is dependent on the zero threshold voltage(V_(th)) MOSFET and the charge transfer switch(CTS) charge pump.The proposed high voltage generator circuit has been implemented in a 0.35μm EEPROM CMOS process.Measured results show that the proposed high voltage generator circuit has a low power consumption of about 150.48μW and a higher pumping efficiency(83.3%) than previously reported circuits.This high voltage generator circuit can also be widely used in low-power flash devices due to its high efficiency and low power dissipation.展开更多
Conventional organic solar cells are based on fullerene acceptors,which caused several drawbacks including poor absorption in visible and near IR regions,limited tunability of energy levels,and most importantly,large ...Conventional organic solar cells are based on fullerene acceptors,which caused several drawbacks including poor absorption in visible and near IR regions,limited tunability of energy levels,and most importantly,large voltage loss from the optical bandgap of the cell to the open circuit voltage of the solar cell[1].During the past few years,nonfullerene OSCs have emerged as a promising alternative to fullerene devices,as their optical and electronic properties can be readily tuned.Furthermore,it has been demonstrated in numerous cases that non-fullerene OSCs[2]can achieve small voltage loss of about 0.55 V,which is much improved compared to that of conventional devices.Achieving such a small voltage loss is of paramount importance to OSCs,as it indicates the maximum achievable efficiency of OSCs can be increased to nearly 20%.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. 52071144, 52231009,51831009, 51901043)the Guangdong Basic and Applied Basic Research Foundation (No. 2023B1515040011)+1 种基金the Guangzhou Key Research and Development Program (No. 202103040001)the TCL Science and Technology Innovation Fund (No.20222055)。
文摘In the past two decades,a lot of high-capacity conversion-type metal oxides have been intensively studied as alternative anode materials for Li-ion batteries with higher energy density.Unfortunately,their large voltage hysteresis(0.8-1.2 V) within reversed conversion reactions results in huge round-trip inefficiencies and thus lower energy efficiency(50%-75%) in full cells than those with graphite anodes.This remains a long-term open question and has been the most serious drawback toward application of metal oxide anodes.Here we clarify the origins of voltage hysteresis in the typical SnO2anode and propose a universal strategy to minimize it.With the established in situ phosphating to generate metal phosphates during reversed conversion reactions in synergy with boosted reaction kinetics by the added P and Mo,the huge voltage hysteresis of 0.9 V in SnO_(2),SnO_(2)-Mo,and 0.6 V in SnO2-P anodes is minimized to 0.3 V in a ternary SnO_(2)-Mo-P(SOMP) composite,along with stable high capacity of 936 mA h g^(-1)after 800 cycles.The small voltage hysteresis can remain stable even the SOMP anode operated at high current rate of10 A g^(-1)and wide-range temperatures from 60 to 30℃,resulting in a high energy efficiency of88.5% in full cells.This effective strategy to minimize voltage hysteresis has also been demonstrated in Fe2O3,Co3O4-basded conversion-type anodes.This work provides important guidance to advance the high-capacity metal oxide anodes from laboratory to industrialization.
文摘An on-chip voltage reference with a wide supply voltage range is required by some applications,especially that of power management (PM) controller chips applied to telecommunication, automotive, lighting equipment, etc., when high power supply voltage is needed. Accordingly,a new bandgap reference with a wide supply voltage range is proposed. Due to the improved structure,it features a high power supply rejection ratio (PSRR) and high temperature stability. In addition, an auxiliary micro-power reference is introduced to support the sleep mode of the PM chip and reduce its standby power consumption. The auxiliary reference provides bias currents in normal mode and a 1.28V reference voltage in sleep mode to replace the main reference and save power. Simulation results show that the reference provides a reference volt- age of 1.27V,which has a 3.5mV drift over the temperature range from -20 to 120~C and 56t^V deviation over a supply voltage range from 3 to 40V. The PSRR is higher than 100dB for frequency below 10kHz. The circuit was completed in 1.5tzm BCD (Bipolar-CMOS-DMOS) technology. The experimental results show that all main expectations are achieved.
基金Project(2014CB046403)supported by the National Basic Research Program of ChinaProject(2013BAF07B01)supported by the National Key Technology R&D Program of China
文摘A novel performance model of losses of pump was presented,which allows an explicit insight into the losses of various friction pairs of pump.The aim is to clarify that to what extent the hydro-mechanical losses affect efficiency,and to further gain an insight into the variation and distribution characteristics of hydro-mechanical losses over wide operating ranges.A good agreement is found in the comparisons between simulation and experimental results.At rated speed,the hydro-mechanical losses take a proportion ranging from 87% to 89% and from 68% to 97%,respectively,of the total power losses of pump working under 5 MPa pressure conditions,and 13% of full displacement conditions.Furthermore,within the variation of speed ranging from 48% to 100% of rated speed,and pressure ranging from 14% to 100% of rated pressure,the main sources of hydro-mechanical losses change to slipper swash plate pair and valve plate cylinder pair at low displacement conditions,from the piston cylinder pair and slipper swash plate pair at full displacement conditions.Besides,the hydro-mechanical losses in ball guide retainer pair are found to be almost independent of pressure.The derived conclusions clarify the main orientations of efforts to improve the efficiency performance of pump,and the proposed model can service for the design of pump with higher efficiency performance.
基金supported by the National Natural Science Foundation of China (21175043,91233102)the Fundamental Research Funds for the Central Universities for financial support
文摘CdSe quantum dot sensitized solar cells (QDSCs) modified with graphene quantum dots (GQDs) have been successfully achieved in this work for the first time. Satisfactorily, the optimized photovoltage (Voc) of the modified QDSCs was approximately 0.04 V higher than that of plain CdSe QDSCs, consequently improving the photovoltaic performance of the resulting QDSCs. Served as a novel coating on the CdSe QD sensitized photoanode, GQDs played a vital role in improving Voc due to the suppressed charge recombination which has been confirmed by electron impedance spectroscopy as well as transient photovoltage decay measure- ments. Moreover, different adsorption sequences, concentration and deposition time of GQDs have also been systematically investigated to boost the power conversion efficiency (PCE) of CdSe QDSCs. After the coating of CdSe with GQDs, the resulting champion CdSe QDSCs exhibited an improved PCE of 6.59% under AM 1.5G full one sun illumination.
基金supported by the Natural Science Foundation of Fujian Province,China(Grant No.2012J01280)
文摘We present a new method of making a textured V-pit surface for improving the light extraction efficiency in GaN- based light-emitting diodes and compare it with the usual low-temperature method for p-GaN V-pits. Three types of GaNbased light-emitting diodes (LEDs) with surface V-pits in different densities and regions were grown by metal-organic chemical vapor deposition. We achieved the highest output power and lowest forward voltage values with the p-InGaN V-pit LED. The V-pits enhanced the light output power values by 1.45 times the values of the conventional LED owing to an enhancement of the light scattering probability and an effective reduction of Mg-acceptor activation energy. Moreover, this new technique effectively solved the higher forward voltage problem of the usual V-pit LED.
文摘High Efficiency Video Coding (HEVC) is the latest international video coding standard, which can provide the similar quality with about half bandwidth compared with its predecessor, H.264/MPEG?4 AVC. To meet the requirement of higher bit depth coding and more chroma sampling formats, range extensions of HEVC were developed. This paper introduces the coding tools in HEVC range extensions and provides experimental results to compare HEVC range extensions with previous video coding standards. Ex?perimental results show that HEVC range extensions improve coding efficiency much over H.264/MPEG?4 AVC High Predictive profile, especially for 4K sequences.
文摘To realize effective utilization of renewable energy sources,a novel polymorphic topology with hybrid control strategy based LLC resonant converter was analyzed and designed in this paper.By combining the merits of a full bridge LLC resonant converter,three-level half bridge LLC resonant converter,and variable frequency control mode,the converter realizes an intelligent estimation of input voltage by automatically changing its internal cir-cuit topology.Under this control strategy,different input voltages determine different operation modes.This is achieved in full bridge LLC mode when the input voltage is low.If the input voltage rises to a certain level,it operates in three-level half bridge LLC mode.These switches are digital and entirely carried out by the DSP(Digi-tal Signal Processor),which means that an auxiliary circuit is unnecessary,where a simple strategy of software modification can be utilized.Experimental results of a 500W prototype with 100V~600V input voltage and full load efficiency of up to 92%are developed to verify feasibility and practicability.This type of converter is suitable for applications with an ultra-wide input voltage range,such as wind turbines,photovoltaic generators,bioenergy,and other renewable energy sources.
文摘This paper describes how the power efficiency of fully integrated Dickson charge pumps in high- voltage IC technologies can be improved considerably by implementing charge recycling techniques, by replacing the normal PN junction diodes by pulse-driven active diodes, and by choosing an appropriate advanced smart power IC technology. A detailed analysis reveals that the combination of these 3 methods more than doubles the power efficiency compared to traditional Dickson charge pump designs.
文摘A high efficiency LED(Light Emitting Diode) driver based on Buck converter, which could operate under a wide AC input voltage range(85V^265V) and drive a series of high power LEDs, is presented in this paper. The operation principles, power loss factors of the LED driver in this study are analyzed and discussed in detail and some effective ways to improve efficiency are proposed through system design considerations. To verify the feasibility, a laboratory prototype is also designed and tested for an LED lamp which consists of 16 LUMILEDS LEDs in series. Experimental results show that a high efficiency of 92% at I0=350mA can be achieved and the studied driver might be practical for driving high power LEDs. In the last, the overall efficiency over 90% is gained through some experiments under variable input and output voltages and verifies the validity of the designed driver.
文摘This paper presents a 1.8 GHz class-E controlled power amplifier (PA). The proposed power amplifier is designed with two-stage architecture. The main advantage of the proposed technique for output control power is a high 37 dB output power dynamic range with good average power adding efficiency. The measurement results show that the PA achieves a high power gain of 23 dBm and power added efficiency (PAE) by 38%. The circuit was post layout simulated in a standard 0.18 μm CMOS technology.
基金Natural Science Research(Department of Education)Project of Higher Education Institutions in Guangdong Province(Grant No.2018KQNCX063)Applied Basic Research Fund of Guangdong Province(Grant No.2024B1515020071)+1 种基金National Natural Science Foundation of China(Grant Nos.52371217 and 52150410411)Guangdong Provincial Science and Technology Plan Project(Grant No.2023A0505020009)。
文摘Li-rich Mn-based oxides(LRMOs)hold great promise as next-generation cathode materials for high-energy Li-ion batteries because of their low cost and high capacity.Nevertheless,the practical application of LRMOs is impeded by their low initial Coulombic efficiency and rapid voltage decay.Herein,a V-doped layered-spinel coherent layer is constructed on the surface of a Co-free LRMO through a simple treatment with NH_(4)VO_(3).The layered-spinel coherent layer with 3D ion channels enhanced Li+diffusion efficiency,mitigates surface-inter-face reactions and suppresses irreversible oxygen release.Notably,V-doping significantly reduces the Bader charge of oxygen atoms,thereby impeding excessive oxidation of oxygen ions and further enhancing the stability of O-redox.The modified LRMO exhibites a remarkable initial Coulombic efficiency of 91.6%,signifi-cantly surpassing that of the original LRMO(74.4%).Furthermore,the treated sample showes an impressive capacity retention rate of 91.9%after 200 cycles,accompanied by a voltage decay of merely 0.47 mV per cycle.The proposed treatment approach is straightforward and significantly improves the initial Coulombic efficiency,voltage stability,and capacity stability of LRMO cathode materials,thus holding considerable promise for the development of high-energy Li-ion batteries.
文摘The solar energy conversion system is very interesting alternative on supplement the electric system generation, due to the persistent cost reduction of the overall system and cleaner power generation. To obtain a stable voltage from an input supply (PV cells) that is higher and lower than the output, a high efficiency and minimum ripple DC-DC converter required in the system for residential power production. Buck-boost converters make it possible to efficiently convert a DC voltage to either a lower or higher voltages. Buck-boost converters are especially useful for PV maximum power tracking purposes, where the objective is to draw maximum possible power from solar panels at all times, regardless of the load. This paper analyzes and describes step by step the process of designing, and simulation of high efficiency low ripple voltage buck-boost DC-DC converter for the photovoltaic solar conversion system applicable to a (typical) single family home based on battery-based systems. The input voltage can typically change from (20 V) initially, down to (5 V), and provide a regulated voltage within the range of the battery (12 V). PLECS simulation results provide strong evidences about the high efficiency, minimum ripple voltage, high accuracy, and the usefulness of the system of the proposed converter when applied to either residential or solar home applications.
文摘This paper presents a detailed study of square reflect array (RA) antenna aperture efficiency (ηa). Effects of quantization-phase and limited phase-range errors on radiation pattern, half-power beam width (HPBW) and ηa for different feed locations are investigated. Results show an in-crease in side-lobe levels (SLLs) and a slightly reduction in ηa with quantization-phase augmentation or element phase-range reduction, however, the effects on HPBW are negligible. Nevertheless, the degradation in ηa is negligible when the quantization-phase is lower than 30° or phase-range is more than 300°. Parametric studies have been carried out to provide design guidelines to maximize ηa. It is perceived that the offset-angle plays an important role to determine ηa, especially for feed with narrow beam width.
文摘In the Metals Industry,interruption-free processes to produce high-quality end products are a prerequisite. The main drives together with the mill stands play a key role in the success of rolling mills.The crucial demands placed on the drive system are:high-dynamic performance of drive and its control system,ability to handle the process related overloads,smooth running,high availability,high efficiency,easy serviceability and ability to integrate seamlessly with the automation systems.With numerous reference installations and many years of experience Siemens VAI has the wider expertise and the portfolio to provide the right drive for every application. This paper examines the latest innovation,SINAMICS drive technology,for both new drive applications as well as for modernizing the existing drives in rolling mill applications like hot strips mills,plate mills,cold rolling mills,and long rolling mills.
基金supported by the National Natural Science Foundation of China(No.61574125)the Industry Innovation Project of Suzhou City of China(No.SYG201641)
文摘We present and propose a complete and iterative integrated-circuit and electro-magnetic(EM) co-design methodology and procedure for a low-voltage sub-1 GHz class-E PA.The presented class-E PA consists of the onchip power transistor,the on-chip gate driving circuits,the off-chip tunable LC load network and the off-chip LC ladder low pass filter.The design methodology includes an explicit design equation based circuit components values' analysis and numerical derivation,output power targeted transistor size and low pass filter design,and power efficiency oriented design optimization.The proposed design procedure includes the power efficiency oriented LC network tuning,the detailed circuit/EM co-simulation plan on integrated circuit level,package level and PCB level to ensure an accurate simulation to measurement match and first pass design success.The proposed PA is targeted to achieve more than 15 dBm output power delivery and 40% power efficiency at 433 MHz frequency band with 1.5 V low voltage supply.The LC load network is designed to be off-chip for the purpose of easy tuning and optimization.The same circuit can be extended to all sub-1 GHz applications with the same tuning and optimization on the load network at different frequencies.The amplifier is implemented in 0.13 μm CMOS technology with a core area occupation of 400 μm by 300 μm.Measurement results showed that it provided power delivery of 16.42 dBm at antenna with efficiency of 40.6%.A harmonics suppression of 44 dBc is achieved,making it suitable for massive deployment of IoT devices.
基金This work was supported by China Railway Corporation Science and Technology Research and Development Project(P2021J038).
文摘In recent years,switched inductor(SL)technology,switched capacitor(SC)technology,and switched inductor-capacitor(SL-SC)technology have been widely applied to optimize and improve DC-DC boost converters,which can effectively enhance voltage gain and reduce device stress.To address the issue of low output voltage in current renewable energy power generation systems,this study proposes a novel non-isolated cubic high-gain DC-DC converter based on the traditional quadratic DC-DC boost converter by incorporating a SC and a SL-SC unit.Firstly,the proposed converter’s details are elaborated,including its topology structure,operating mode,voltage gain,device stress,and power loss.Subsequently,a comparative analysis is conducted on the voltage gain and device stress between the proposed converter and other high-gain converters.Then,a closed-loop simulation system is constructed to obtain simulation waveforms of various devices and explore the dynamic performance.Finally,an experimental prototype is built,experimental waveforms are obtained,and the experimental dynamic performance and conversion efficiency are analyzed.The theoretical analysis’s correctness is verified through simulation and experimental results.The proposed converter has advantages such as high voltage gain,low device stress,high conversion efficiency,simple control,and wide input voltage range,achieving a good balance between voltage gain,device stress,and power loss.The proposed converter is well-suited for renewable energy systems and holds theoretical significance and practical value in renewable energy applications.It provides an effective solution to the issue of low output voltage in renewable energy power generation systems.
基金Project supported by the National Natural Science Foundation of China(Nos.51177148 and 51407151)
文摘This paper proposes a new variable-mode control strategy that is applicable for LLC resonant converters operating in a wide input voltage range. This control strategy incorporates advantages from full-bridge LLC resonant converters, half-bridge LLC resonant converters, variable-frequency control mode, and phase-shift control mode. Under this control strategy, different input voltages determine the different operating modes of the circuit. When the input voltage is very low, it works in a full-bridge circuit and variable frequency mode(FB_VF mode). When the input voltage rises to a certain level, it shifts to a full-bridge circuit and phase-shifting control mode(FB_PS mode). When the input voltage further increases, it shifts into a half-bridge circuit and variable frequency mode(HB_VF mode). Such shifts are enabled by the digital signal processor(DSP), which means that no auxiliary circuit is needed, just a modification of the software. From light load to heavy load, the primary MOSFET for the LLC resonant converter can realize zero-voltage switching(ZVS), and the secondary rectifier diode can realize zero-current switching(ZCS). With an LLC resonant converter prototype with a 300 W rated power and a 450 V output voltage, as well as a resonant converter with 20–120 V input voltage, the experiments verified the proposed control strategy. Experimental results showed that under this control strategy, the maximum converter efficiency reaches 95.7% and the range of the input voltage expands threefold.
基金supported by the National Natural Science Foundation of China(No.61072010)
文摘This paper presents a low power and high efficiency high voltage generator circuit embedded in electrically erasable programmable read-only memory(EEPROM).The low power is minimized by a capacitance divider circuit and a regulator circuit using the controlling clock switch technique.The high efficiency is dependent on the zero threshold voltage(V_(th)) MOSFET and the charge transfer switch(CTS) charge pump.The proposed high voltage generator circuit has been implemented in a 0.35μm EEPROM CMOS process.Measured results show that the proposed high voltage generator circuit has a low power consumption of about 150.48μW and a higher pumping efficiency(83.3%) than previously reported circuits.This high voltage generator circuit can also be widely used in low-power flash devices due to its high efficiency and low power dissipation.
文摘Conventional organic solar cells are based on fullerene acceptors,which caused several drawbacks including poor absorption in visible and near IR regions,limited tunability of energy levels,and most importantly,large voltage loss from the optical bandgap of the cell to the open circuit voltage of the solar cell[1].During the past few years,nonfullerene OSCs have emerged as a promising alternative to fullerene devices,as their optical and electronic properties can be readily tuned.Furthermore,it has been demonstrated in numerous cases that non-fullerene OSCs[2]can achieve small voltage loss of about 0.55 V,which is much improved compared to that of conventional devices.Achieving such a small voltage loss is of paramount importance to OSCs,as it indicates the maximum achievable efficiency of OSCs can be increased to nearly 20%.