The design and implementation of a novel ADC architecture called ring-ADC for digital voltage regulator module controllers are presented. Based on the principle of voltage-controlled oscillators' transform from volta...The design and implementation of a novel ADC architecture called ring-ADC for digital voltage regulator module controllers are presented. Based on the principle of voltage-controlled oscillators' transform from voltage to frequency,the A/D conversion of ring-ADC achieves good linearity and precise calibration against process variations compared with the delay-line ADC. A differential pulse counting discriminator also helps decrease the power consumption of the ring-ADC. It is fabricated with a Chartered 0.35μm CMOS process, and the measurement results of the integral and differential nonlinearity performance are 0.92LSB and 1.2LSB respectively. The maximum gain error measured in ten sample chips is ± 3.85%. With sampling rate of 500kHz and when the voltage regulator module (VRM) works in steady state, the ring-ADC's average power consumption is 2.56mW. The ring-ADC is verified to meet the requirements for digital VRM controller application.展开更多
A new approach for the design and implementation of a programmable voltage reference based on an improved current mode bandgap voltage reference is presented. The circuit is simulated and fabricated with Chartered 0....A new approach for the design and implementation of a programmable voltage reference based on an improved current mode bandgap voltage reference is presented. The circuit is simulated and fabricated with Chartered 0. 35μm mixed-signal technology. Measurements demonstrate that the temperature coefficient is ± 36. 3ppm/℃ from 0 to 100℃ when the VID inputs are 11110.As the supply voltage is varied from 2.7 to 5V, the voltage reference varies by about 5mV. The maximum glitch of the transient response is about 20mV at 125kHz. Depending on the state of the five VID inputs,an output voltage between 1.1 and 1.85V is programmed in increments of 25mV.展开更多
A method was developed to solve the combined system of the current field and the circuit. The "super-node" was used to transform the matrix for conventional nodal analyses of a circuit system from non-positive defin...A method was developed to solve the combined system of the current field and the circuit. The "super-node" was used to transform the matrix for conventional nodal analyses of a circuit system from non-positive definite to positive definite. Then, a positive definite matrix for the overall system was obtained by combining the matrix from the circuit nodal analysis method and the matrix resulted from finite element method (FEM) formulation to solve the FEM fields. This approach has been successfully applied to simulate the electrical potential and current distributions on each metal layer of printed circuit boards (PCBs) and integrated circuit (IC) packages for a given power supply. The simulation results can then be used to analyze the properties of the PCBs and IC packages such as the port resistances and IR drops. The results can also be used to optimize PCB and IC package designs, such as by adjusting the power/ground distribution networks.展开更多
文摘The design and implementation of a novel ADC architecture called ring-ADC for digital voltage regulator module controllers are presented. Based on the principle of voltage-controlled oscillators' transform from voltage to frequency,the A/D conversion of ring-ADC achieves good linearity and precise calibration against process variations compared with the delay-line ADC. A differential pulse counting discriminator also helps decrease the power consumption of the ring-ADC. It is fabricated with a Chartered 0.35μm CMOS process, and the measurement results of the integral and differential nonlinearity performance are 0.92LSB and 1.2LSB respectively. The maximum gain error measured in ten sample chips is ± 3.85%. With sampling rate of 500kHz and when the voltage regulator module (VRM) works in steady state, the ring-ADC's average power consumption is 2.56mW. The ring-ADC is verified to meet the requirements for digital VRM controller application.
文摘A new approach for the design and implementation of a programmable voltage reference based on an improved current mode bandgap voltage reference is presented. The circuit is simulated and fabricated with Chartered 0. 35μm mixed-signal technology. Measurements demonstrate that the temperature coefficient is ± 36. 3ppm/℃ from 0 to 100℃ when the VID inputs are 11110.As the supply voltage is varied from 2.7 to 5V, the voltage reference varies by about 5mV. The maximum glitch of the transient response is about 20mV at 125kHz. Depending on the state of the five VID inputs,an output voltage between 1.1 and 1.85V is programmed in increments of 25mV.
文摘A method was developed to solve the combined system of the current field and the circuit. The "super-node" was used to transform the matrix for conventional nodal analyses of a circuit system from non-positive definite to positive definite. Then, a positive definite matrix for the overall system was obtained by combining the matrix from the circuit nodal analysis method and the matrix resulted from finite element method (FEM) formulation to solve the FEM fields. This approach has been successfully applied to simulate the electrical potential and current distributions on each metal layer of printed circuit boards (PCBs) and integrated circuit (IC) packages for a given power supply. The simulation results can then be used to analyze the properties of the PCBs and IC packages such as the port resistances and IR drops. The results can also be used to optimize PCB and IC package designs, such as by adjusting the power/ground distribution networks.