This paper concludes the case study work on the optical sensor, which is a new method for voltage and current measurement. Fiber Bragg gratings (FBG) have been developed and used for decades in the telecommunication i...This paper concludes the case study work on the optical sensor, which is a new method for voltage and current measurement. Fiber Bragg gratings (FBG) have been developed and used for decades in the telecommunication industry. In recent years, FBG sensors have found wide applications in monitoring strain, temperature, voltage and current across all industries. As the process of constructing a robust smart grid, thousands of miles of optical-fibers have been deployed along the power transmission lines for the purpose of power production communication. This paper focuses on using the power optical fiber as voltage/current sensors instead of those copper wired traditional current transformers. By using piezoelectric layers, the optical sensor is able to transform voltage/current magnitude into optical signal, as well as transmit the signal through the optical fiber. The application of using optical fiber will significantly reduce the cost of deploying traditional current transformers all around the power grid. Moreover, the optical sensor is more stable, more accurate and faster, with such characteristics, the smart grid monitoring system could be much better. The application of combining the optical composite low-voltage cable (OPLC) and the optical current sensor in the distribution network for smart distribution monitoring has been analyzed.展开更多
Herein,a physical and mathematical model of the voltage−current characteristics of a p−n heterostructure with quantum wells(QWs)is prepared using the Sah−Noyce−Shockley(SNS)recombination mechanism to show the SNS reco...Herein,a physical and mathematical model of the voltage−current characteristics of a p−n heterostructure with quantum wells(QWs)is prepared using the Sah−Noyce−Shockley(SNS)recombination mechanism to show the SNS recombination rate of the correction function of the distribution of QWs in the space charge region of diode configuration.A comparison of the model voltage−current characteristics(VCCs)with the experimental ones reveals their adequacy.The technological parameters of the structure of the VCC model are determined experimentally using a nondestructive capacitive approach for determining the impurity distribution profile in the active region of the diode structure with a profile depth resolution of up to 10Å.The correction function in the expression of the recombination rate shows the possibility of determining the derivative of the VCCs of structures with QWs with a nonideality factor of up to 4.展开更多
Abstract: The current measuring principle, the hardware structure and the software functions of a high voltage breaker current monitoring and fault diagnosis system are introduced. A simple algorithm for calculating t...Abstract: The current measuring principle, the hardware structure and the software functions of a high voltage breaker current monitoring and fault diagnosis system are introduced. A simple algorithm for calculating the current effective value is given. The cut - off characteristics of the breaker are classified. This system can provide a foundation for reasonably determining the breaker service period.展开更多
The reverse generation current under high-gate-voltage stress condition in LDD nMOSFET's is studied. We find that the generation current peak decreases as the stress time increases. We ascribe this finding to the dom...The reverse generation current under high-gate-voltage stress condition in LDD nMOSFET's is studied. We find that the generation current peak decreases as the stress time increases. We ascribe this finding to the dominating oxide trapped electrons that reduce the effective drain bias, lowering the maximal generation rate. The density of the effective trapped electrons affecting the effective drain bias is calculated with our model.展开更多
This paper proposes a zer o current and zero voltage switching (ZCZVS) PWM Boost full bridge (FB) conve rter. With series inductors, the leading switches can realize zero current swit ching (ZCS) in a wide load ra...This paper proposes a zer o current and zero voltage switching (ZCZVS) PWM Boost full bridge (FB) conve rter. With series inductors, the leading switches can realize zero current swit ching (ZCS) in a wide load range using the energy of the output capacitor. Ma king use of parasitic capacitors of the lagging switches and parallel auxiliary i nductance with the primary winding of the transformer, the lagging switches can realize zero voltage switching (ZVS) under any load. Compared with the ZCS PWM Boost FB converter, the new converter has no current duty cycle loss. Operat ional principle and parameter design are analyzed. Experimental results verify the effectiveness of the proposed converter.展开更多
A feedback control system is needed to restrain plasma vertical displacement in EAST (Experimental Advanced Superconducting Toknmak). A fast control power supply excites active feedback coils, which produces a magne...A feedback control system is needed to restrain plasma vertical displacement in EAST (Experimental Advanced Superconducting Toknmak). A fast control power supply excites active feedback coils, which produces a magnetic field to control the plasma's displacement. With the development of EAST, new demands on the new fast control power supply have led to an enhanced ability of fast response and output current, as well as a new control mode. The structure of cascaded and paralleled H-bridges can meet the demand of extended capacity, and digital control can reMize current and voltage mixed control mode. The validity of the proposed scheme is confirmed by experiments.展开更多
The characteristics of the extracted ion current have a significant impact on the design and testing of ion source performance.In this paper,a 2D in space and 3D in velocity space particle in cell(2D3V PIC)method is u...The characteristics of the extracted ion current have a significant impact on the design and testing of ion source performance.In this paper,a 2D in space and 3D in velocity space particle in cell(2D3V PIC)method is utilized to simulate plasma motion and ion extraction characteristics under various initial plasma velocity distributions and extraction voltages in a Cartesian coordinate system.The plasma density is of the order of 10^(15)m^(-3)-10^(16)m^(-3)and the extraction voltage is of the order of 100 V-1000 V.The study investigates the impact of various extraction voltages on the velocity and density distributions of electrons and positive ions,and analyzes the influence of different initial plasma velocity distributions on the extraction current.The simulation results reveal that the main reason for the variation of extraction current is the spacecharge force formed by the relative aggregation of positive and negative net charges.This lays the foundation for a deeper understanding of extraction beam characteristics.展开更多
A high performance current and voltage measurement system has been developed in power system. The system is composed of two parts: one current measurement element and one voltage measurement element. A Rogowski coil ...A high performance current and voltage measurement system has been developed in power system. The system is composed of two parts: one current measurement element and one voltage measurement element. A Rogowski coil and a capacitive voltage divider are used respectively for the line current and voltage measurements. Active electronic components are used to modulate signal, and power supply for these components is drawn from power line via an auxiliary current transformer. Measurement signal is transmitted by optical fibers, which is resistant to electromagnetic induction and noise. With careful design and the use of digital signal processing technology, the whole system can meet 0.5% accuracy for metering and provides large dynamic range coupled with good accuracy for protective relaying use.展开更多
Current--voltage measurements obtained from lead zirconate titanate/nickel bilayered hollow cylindrical magnetoelectric composite showed that a sinusoidal current applied to the copper coil wrapped around the hollow c...Current--voltage measurements obtained from lead zirconate titanate/nickel bilayered hollow cylindrical magnetoelectric composite showed that a sinusoidal current applied to the copper coil wrapped around the hollow cylinder circumference induces voltage across the lead zirconate titanate layer thickness. The current--voltage coefficient and the maximum induced voltage in lead zirconate titanate at 1~kHz and resonance (60.1~kHz) frequencies increased linearly with the number of the coil turns and the applied current. The resonance frequency corresponds to the electromechanical resonance frequency. The current--voltage coefficient can be significantly improved by optimizing the magnetoelectric structure geometry and/or increasing the number of coil turns. Hollow cylindrical lead zirconate titanate/nickel structures can be potentially used as current sensors.展开更多
With the development of power plants towards high power and intelligent operation direction,the vibrations or failures of blades,especially the last stage blades in steam turbines,happen more frequently due to the uns...With the development of power plants towards high power and intelligent operation direction,the vibrations or failures of blades,especially the last stage blades in steam turbines,happen more frequently due to the unstable operating conditions brought by flexible operation.A vibration measuring method for the shrouded blades of a steam turbine based on eddy current sensors with high frequency response is proposed,meeting the requirements of non-contact heath monitoring.The eddy current sensors produce the signals which are related to the area changing of every blade’s shroud resulting from the rotation of stator.Then an improved blade tip timing(BTT)technique is proposed to detect the vibrations of shrouded blades by measuring the arrival time of each area changing signal.A structure of eddy current sensors is developed in steam turbines and an amplitude modulation/demodulation circuit is designed to improve the response bandwidth up to 250 kHz.Vibration tests for the last stage blades of a steam turbine were carried out and the results validate the efficiency of the improved BTT technique and the high frequency response of the eddy current sensors presented.展开更多
In this study,a pulsed,high voltage driven hollow-cathode electron beam sources through an optical trigger is designed with characteristics of simple structure,low cost,and easy triggering.To validate the new design,t...In this study,a pulsed,high voltage driven hollow-cathode electron beam sources through an optical trigger is designed with characteristics of simple structure,low cost,and easy triggering.To validate the new design,the characteristics of hollow-cathode discharge and electron beam characterization under pulsed high voltage drive are studied experimentally and discussed by discharge characteristics and analyses of waveform details,respectively.The validation experiments indicate that the pulsed high voltage supply significantly improves the frequency and stability of the discharge,which provides a new solution for the realization of a high-frequency,high-energy electron beam source.The peak current amplitude in the high-energy electron beam increases from 6.2 A to 79.6 A,which indicates the pulsed power mode significantly improves the electron beam performance.Besides,increasing the capacitance significantly affects the highcurrent,lower-energy electron beam more than the high-energy electron beam.展开更多
Nonlinear loads in the power distribution system cause non-sinusoidal currents and voltages with harmonic components.Shunt active filters(SAF) with current controlled voltage source inverters(CCVSI) are usually used t...Nonlinear loads in the power distribution system cause non-sinusoidal currents and voltages with harmonic components.Shunt active filters(SAF) with current controlled voltage source inverters(CCVSI) are usually used to obtain balanced and sinusoidal source currents by injecting compensation currents.However,CCVSI with traditional controllers have a limited transient and steady state performance.In this paper,we propose an adaptive dynamic programming(ADP) controller with online learning capability to improve transient response and harmonics.The proposed controller works alongside existing proportional integral(PI) controllers to efficiently track the reference currents in the d-q domain.It can generate adaptive control actions to compensate the PI controller.The proposed system was simulated under different nonlinear(three-phase full wave rectifier) load conditions.The performance of the proposed approach was compared with the traditional approach.We have also included the simulation results without connecting the traditional PI control based power inverter for reference comparison.The online learning based ADP controller not only reduced average total harmonic distortion by 18.41%,but also outperformed traditional PI controllers during transients.展开更多
In order to investigate the injection current uniformity around the induction cell bores, two fully electromagnetic (EM) models are respectively established for a single-stage induction cell and an induction voltage...In order to investigate the injection current uniformity around the induction cell bores, two fully electromagnetic (EM) models are respectively established for a single-stage induction cell and an induction voltage adder (IVA) with three cells stacked in series, without considering electron emission. By means of these two models, some factors affecting the injection current uni- formity are simulated and analyzed, such as the impedances of adders and loads, cell locations, and feed timing of parallel driving pulses. Simulation results indicate that higher impedances of adder and loads are slightly beneficial to improve injection current uniformity. As the impedances of adder and loads increase from 5 Ω to 30Ω, the asymmetric coefficient of feed currents decreases from 10.3% to 6.6%. The current non-uniformity within the first cell is a little worse than that in other downstream cells. Simulation results also show that the feed timing would greatly affect current waveforms, and consequently cause some distortion in pulse fronts of cell output voltages. For a given driving pulse with duration time of 70-80 ns, the feed timing with a time deviation of less than 20 ns is acceptable for the three-cell IVAs, just causing the rise time of output voltages to increase about 5 ns at most and making the peak voltage decrease by 3.5%.展开更多
Voltage source converter based high voltage direct current(VSC-HVDC)can participate in voltage regulation by flexible control to help maintain the voltage stability of the power grid.In order to quantitatively evaluat...Voltage source converter based high voltage direct current(VSC-HVDC)can participate in voltage regulation by flexible control to help maintain the voltage stability of the power grid.In order to quantitatively evaluate its influence on the voltage interaction between VSC-HVDC and line commutated converter based high voltage direct current(LCC-HVDC),this paper proposes a hybrid multi-infeed interaction factor(HMIIF)calculation method considering the voltage regulation control characteristics of VSC-HVDC.Firstly,for a hybrid multi-infeed high voltage direct current system,an additional equivalent operating admittance matrix is constructed to characterize HVDC equipment characteristics under small disturbance.Secondly,based on the characteristic curve between the reactive power and the voltage of a certain VSC-HVDC project,the additional equivalent operating admittance of VSC-HVDC is derived.The additional equivalent operating admittance matrix calculation method is proposed.Thirdly,the equivalent bus impedance matrix is obtained by modifying the alternating current(AC)system admittance matrix with the additional equivalent operating admittance matrix.On this basis,the HMIIF calculation method based on the equivalent bus impedance ratio is proposed.Finally,the effectiveness of the proposed method is verified in a hybrid dual-infeed high voltage direct current system constructed in Power Systems Computer Aided Design(PSCAD),and the influence of voltage regulation control on HMIIF is analyzed.展开更多
An input-output signal selection based on Phillips-Heffron model of a parallel high voltage alternative current/high voltage direct current(HVAC/HVDC) power system is presented to study power system stability. It is w...An input-output signal selection based on Phillips-Heffron model of a parallel high voltage alternative current/high voltage direct current(HVAC/HVDC) power system is presented to study power system stability. It is well known that appropriate coupling of inputs-outputs signals in the multivariable HVDC-HVAC system can improve the performance of designed supplemetary controller. In this work, different analysis techniques are used to measure controllability and observability of electromechanical oscillation mode. Also inputs–outputs interactions are considered and suggestions are drawn to select the best signal pair through the system inputs-outputs. In addition, a supplementary online adaptive controller for nonlinear HVDC to damp low frequency oscillations in a weakly connected system is proposed. The results obtained using MATLAB software show that the best output-input for damping controller design is rotor speed deviation as out put and phase angle of rectifier as in put. Also response of system equipped with adaptive damping controller based on HVDC system has appropriate performance when it is faced with faults and disturbance.展开更多
A novel topology low-voltage high precision current reference based on subthreshold Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) is presented. The circuit achieves a temperature-independent reference...A novel topology low-voltage high precision current reference based on subthreshold Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) is presented. The circuit achieves a temperature-independent reference current by a proper combination current of two first-order temperature-compensation current references, which exploit the temperature characteristics of integrated poly2 resistors and the 1- V transconductance characteristics of MOSFET operating in the subthreshold region. The circuit, designed with the 1 st silicon 0.35 μm standard CMOS logic process technology, exhibits a stable current of about 2.25 μA with much low temperature coefficient of 3 × 10^-4μA/℃ in the temperature range of-40-150 ℃ at 1 V supply voltage, and also achieves a better power supply rejection ratio (PSRR) over a broad frequency. The PSRR is about -78 dB at DC and remains -42 dB at the frequency higher than 10 MHz. The maximal process error is about 6,7% based on the Monte Carlo simulation. So it has good process compatibility.展开更多
A threshold-voltage-based 2-D theoretical model for the Current–Voltage characteristics of the AlGaN/GaN high electron mobility transistors (HEMT’s) is developed. The present work proposes an improved charge-control...A threshold-voltage-based 2-D theoretical model for the Current–Voltage characteristics of the AlGaN/GaN high electron mobility transistors (HEMT’s) is developed. The present work proposes an improved charge-control model by employing the Robin boundary condition when introduced the solution of the 2-D Poisson’s equation in the density of charge depleted in the AlGaN layer. The dependence of 2-DEG sheet carrier concentration on the aluminum composition and AlGaN layer thickness has been investigated in detail. Current–voltage characteristics developed from the 2-DEG model in order to take into account the impact of gate lengths. The relation between the kink effect and existing deep centers has also been confirmed by using an electrical approach, which can allow to adjust some of electron transport parameters in order to optimize the output current.展开更多
This paper presents an improved finite control set model predictive current control(FCS-MPCC)of a five-phase permanent magnet synchronous motor(PMSM).First,to avoid including all the 32 voltage vectors provided by a t...This paper presents an improved finite control set model predictive current control(FCS-MPCC)of a five-phase permanent magnet synchronous motor(PMSM).First,to avoid including all the 32 voltage vectors provided by a two-level five-phase inverter into the control set,virtual voltage vectors are adopted.As the third current harmonics can be much reduced by virtual voltage vectors automatically,the harmonic items in the cost function of conventional FCS-MPCC are not considered.Furthermore,an adaptive control set is proposed based on voltage prediction.Best control set with proper voltage vector amplitude corresponding to different rotor speed can be achieved by this method.Consequently,current ripples can be largely reduced and the system performs much better.At last,simulations are established to verify the steady and transient performance of the proposed FCS-MPCC,and experiments based on a 2 kW five-phase motor are carried out.The results have validated the performance improvement of the proposed control strategy.展开更多
Activin A, which was first described in 1986, has been shown to maintain hippocampal neuronal survival. Activin A increases intracellular free Ca2+ via L-type Ca2+ channels. Our previous study showed that activin A ...Activin A, which was first described in 1986, has been shown to maintain hippocampal neuronal survival. Activin A increases intracellular free Ca2+ via L-type Ca2+ channels. Our previous study showed that activin A promotes neurite growth of dorsal root ganglia in embryonic chickens and inhibits nitric oxide secretion. The present study demonstrated for the first time that activin A could maintain cerebral cortex neuronal survival in vitro for a long period, and that activin A was shown to increase voltage-gated Na+ current (/Na) in Neuro-2a cells, which was recorded by patch clamp technique. The present study revealed a novel mechanism for activin A, as well as the influence of activin A on neurons by regulating expressions of vasoactive intestine peptide and inducible nitric oxide synthase.展开更多
文摘This paper concludes the case study work on the optical sensor, which is a new method for voltage and current measurement. Fiber Bragg gratings (FBG) have been developed and used for decades in the telecommunication industry. In recent years, FBG sensors have found wide applications in monitoring strain, temperature, voltage and current across all industries. As the process of constructing a robust smart grid, thousands of miles of optical-fibers have been deployed along the power transmission lines for the purpose of power production communication. This paper focuses on using the power optical fiber as voltage/current sensors instead of those copper wired traditional current transformers. By using piezoelectric layers, the optical sensor is able to transform voltage/current magnitude into optical signal, as well as transmit the signal through the optical fiber. The application of using optical fiber will significantly reduce the cost of deploying traditional current transformers all around the power grid. Moreover, the optical sensor is more stable, more accurate and faster, with such characteristics, the smart grid monitoring system could be much better. The application of combining the optical composite low-voltage cable (OPLC) and the optical current sensor in the distribution network for smart distribution monitoring has been analyzed.
基金conducted within the state assignment of the Ministry of Science and Higher Education for universities(Project No.FZRR-2023-0009).
文摘Herein,a physical and mathematical model of the voltage−current characteristics of a p−n heterostructure with quantum wells(QWs)is prepared using the Sah−Noyce−Shockley(SNS)recombination mechanism to show the SNS recombination rate of the correction function of the distribution of QWs in the space charge region of diode configuration.A comparison of the model voltage−current characteristics(VCCs)with the experimental ones reveals their adequacy.The technological parameters of the structure of the VCC model are determined experimentally using a nondestructive capacitive approach for determining the impurity distribution profile in the active region of the diode structure with a profile depth resolution of up to 10Å.The correction function in the expression of the recombination rate shows the possibility of determining the derivative of the VCCs of structures with QWs with a nonideality factor of up to 4.
文摘Abstract: The current measuring principle, the hardware structure and the software functions of a high voltage breaker current monitoring and fault diagnosis system are introduced. A simple algorithm for calculating the current effective value is given. The cut - off characteristics of the breaker are classified. This system can provide a foundation for reasonably determining the breaker service period.
文摘The reverse generation current under high-gate-voltage stress condition in LDD nMOSFET's is studied. We find that the generation current peak decreases as the stress time increases. We ascribe this finding to the dominating oxide trapped electrons that reduce the effective drain bias, lowering the maximal generation rate. The density of the effective trapped electrons affecting the effective drain bias is calculated with our model.
文摘This paper proposes a zer o current and zero voltage switching (ZCZVS) PWM Boost full bridge (FB) conve rter. With series inductors, the leading switches can realize zero current swit ching (ZCS) in a wide load range using the energy of the output capacitor. Ma king use of parasitic capacitors of the lagging switches and parallel auxiliary i nductance with the primary winding of the transformer, the lagging switches can realize zero voltage switching (ZVS) under any load. Compared with the ZCS PWM Boost FB converter, the new converter has no current duty cycle loss. Operat ional principle and parameter design are analyzed. Experimental results verify the effectiveness of the proposed converter.
基金supported by ITER Program of China(973 Program)(No.2011GB109002)National Natural Science Foundation of China(No.11275056)Hefei University of Technology Doctor Research Foundation of China(No.2011HGBZ1292)
文摘A feedback control system is needed to restrain plasma vertical displacement in EAST (Experimental Advanced Superconducting Toknmak). A fast control power supply excites active feedback coils, which produces a magnetic field to control the plasma's displacement. With the development of EAST, new demands on the new fast control power supply have led to an enhanced ability of fast response and output current, as well as a new control mode. The structure of cascaded and paralleled H-bridges can meet the demand of extended capacity, and digital control can reMize current and voltage mixed control mode. The validity of the proposed scheme is confirmed by experiments.
基金Project supported by Presidential Foundation of CAEP (Grant No.YZJJZQ2022016)the National Natural Science Foundation of China (Grant No.52207177)。
文摘The characteristics of the extracted ion current have a significant impact on the design and testing of ion source performance.In this paper,a 2D in space and 3D in velocity space particle in cell(2D3V PIC)method is utilized to simulate plasma motion and ion extraction characteristics under various initial plasma velocity distributions and extraction voltages in a Cartesian coordinate system.The plasma density is of the order of 10^(15)m^(-3)-10^(16)m^(-3)and the extraction voltage is of the order of 100 V-1000 V.The study investigates the impact of various extraction voltages on the velocity and density distributions of electrons and positive ions,and analyzes the influence of different initial plasma velocity distributions on the extraction current.The simulation results reveal that the main reason for the variation of extraction current is the spacecharge force formed by the relative aggregation of positive and negative net charges.This lays the foundation for a deeper understanding of extraction beam characteristics.
文摘A high performance current and voltage measurement system has been developed in power system. The system is composed of two parts: one current measurement element and one voltage measurement element. A Rogowski coil and a capacitive voltage divider are used respectively for the line current and voltage measurements. Active electronic components are used to modulate signal, and power supply for these components is drawn from power line via an auxiliary current transformer. Measurement signal is transmitted by optical fibers, which is resistant to electromagnetic induction and noise. With careful design and the use of digital signal processing technology, the whole system can meet 0.5% accuracy for metering and provides large dynamic range coupled with good accuracy for protective relaying use.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50572006, 50802008 and 50874010)the Natural Science Foundation of Beijing, China (Grant No. 2073026)+2 种基金the Program for New Century Excellent Talents in University(Grant No. 20060420152)Scholars and Innovative Research Team in University (Grant No. 0509)Alex A. Volinsky wouldlike to acknowledge support from NSF (Grant No. CMMI-0600266)
文摘Current--voltage measurements obtained from lead zirconate titanate/nickel bilayered hollow cylindrical magnetoelectric composite showed that a sinusoidal current applied to the copper coil wrapped around the hollow cylinder circumference induces voltage across the lead zirconate titanate layer thickness. The current--voltage coefficient and the maximum induced voltage in lead zirconate titanate at 1~kHz and resonance (60.1~kHz) frequencies increased linearly with the number of the coil turns and the applied current. The resonance frequency corresponds to the electromechanical resonance frequency. The current--voltage coefficient can be significantly improved by optimizing the magnetoelectric structure geometry and/or increasing the number of coil turns. Hollow cylindrical lead zirconate titanate/nickel structures can be potentially used as current sensors.
基金National Natural Science Foundation of China(No.51775377)National Key Research and Development Plan(No.2017YFF0204800)+2 种基金Natural Science Foundation of TianJin City(No.17JCQNJC01100)Young Elite Scientists Sponsorship Program by Cast of China(No.2016QNRC001)Open Project of Key Laboratory of Underwater Information and Control(No.6142218081811)
文摘With the development of power plants towards high power and intelligent operation direction,the vibrations or failures of blades,especially the last stage blades in steam turbines,happen more frequently due to the unstable operating conditions brought by flexible operation.A vibration measuring method for the shrouded blades of a steam turbine based on eddy current sensors with high frequency response is proposed,meeting the requirements of non-contact heath monitoring.The eddy current sensors produce the signals which are related to the area changing of every blade’s shroud resulting from the rotation of stator.Then an improved blade tip timing(BTT)technique is proposed to detect the vibrations of shrouded blades by measuring the arrival time of each area changing signal.A structure of eddy current sensors is developed in steam turbines and an amplitude modulation/demodulation circuit is designed to improve the response bandwidth up to 250 kHz.Vibration tests for the last stage blades of a steam turbine were carried out and the results validate the efficiency of the improved BTT technique and the high frequency response of the eddy current sensors presented.
基金supported by National Natural Science Foundation of China(No.12102099)the National Key R&D Program of China(No.2021YFC2202700)the Outstanding Academic Leader Project of Shanghai(Youth)(No.23XD1421700),respectively。
文摘In this study,a pulsed,high voltage driven hollow-cathode electron beam sources through an optical trigger is designed with characteristics of simple structure,low cost,and easy triggering.To validate the new design,the characteristics of hollow-cathode discharge and electron beam characterization under pulsed high voltage drive are studied experimentally and discussed by discharge characteristics and analyses of waveform details,respectively.The validation experiments indicate that the pulsed high voltage supply significantly improves the frequency and stability of the discharge,which provides a new solution for the realization of a high-frequency,high-energy electron beam source.The peak current amplitude in the high-energy electron beam increases from 6.2 A to 79.6 A,which indicates the pulsed power mode significantly improves the electron beam performance.Besides,increasing the capacitance significantly affects the highcurrent,lower-energy electron beam more than the high-energy electron beam.
文摘Nonlinear loads in the power distribution system cause non-sinusoidal currents and voltages with harmonic components.Shunt active filters(SAF) with current controlled voltage source inverters(CCVSI) are usually used to obtain balanced and sinusoidal source currents by injecting compensation currents.However,CCVSI with traditional controllers have a limited transient and steady state performance.In this paper,we propose an adaptive dynamic programming(ADP) controller with online learning capability to improve transient response and harmonics.The proposed controller works alongside existing proportional integral(PI) controllers to efficiently track the reference currents in the d-q domain.It can generate adaptive control actions to compensate the PI controller.The proposed system was simulated under different nonlinear(three-phase full wave rectifier) load conditions.The performance of the proposed approach was compared with the traditional approach.We have also included the simulation results without connecting the traditional PI control based power inverter for reference comparison.The online learning based ADP controller not only reduced average total harmonic distortion by 18.41%,but also outperformed traditional PI controllers during transients.
基金supported by National Natural Science Foundation of China(No.51307141)partly by the State Key Laboratory of Intense Pulsed Radiation Simulation(Northwest Institute of Nuclear Technology)under Contract SKLIPR 1206
文摘In order to investigate the injection current uniformity around the induction cell bores, two fully electromagnetic (EM) models are respectively established for a single-stage induction cell and an induction voltage adder (IVA) with three cells stacked in series, without considering electron emission. By means of these two models, some factors affecting the injection current uni- formity are simulated and analyzed, such as the impedances of adders and loads, cell locations, and feed timing of parallel driving pulses. Simulation results indicate that higher impedances of adder and loads are slightly beneficial to improve injection current uniformity. As the impedances of adder and loads increase from 5 Ω to 30Ω, the asymmetric coefficient of feed currents decreases from 10.3% to 6.6%. The current non-uniformity within the first cell is a little worse than that in other downstream cells. Simulation results also show that the feed timing would greatly affect current waveforms, and consequently cause some distortion in pulse fronts of cell output voltages. For a given driving pulse with duration time of 70-80 ns, the feed timing with a time deviation of less than 20 ns is acceptable for the three-cell IVAs, just causing the rise time of output voltages to increase about 5 ns at most and making the peak voltage decrease by 3.5%.
基金supported by the Technology Project of the State Grid Corporation Headquarters Management(Contract No.5100-202158467A-0-0-00).
文摘Voltage source converter based high voltage direct current(VSC-HVDC)can participate in voltage regulation by flexible control to help maintain the voltage stability of the power grid.In order to quantitatively evaluate its influence on the voltage interaction between VSC-HVDC and line commutated converter based high voltage direct current(LCC-HVDC),this paper proposes a hybrid multi-infeed interaction factor(HMIIF)calculation method considering the voltage regulation control characteristics of VSC-HVDC.Firstly,for a hybrid multi-infeed high voltage direct current system,an additional equivalent operating admittance matrix is constructed to characterize HVDC equipment characteristics under small disturbance.Secondly,based on the characteristic curve between the reactive power and the voltage of a certain VSC-HVDC project,the additional equivalent operating admittance of VSC-HVDC is derived.The additional equivalent operating admittance matrix calculation method is proposed.Thirdly,the equivalent bus impedance matrix is obtained by modifying the alternating current(AC)system admittance matrix with the additional equivalent operating admittance matrix.On this basis,the HMIIF calculation method based on the equivalent bus impedance ratio is proposed.Finally,the effectiveness of the proposed method is verified in a hybrid dual-infeed high voltage direct current system constructed in Power Systems Computer Aided Design(PSCAD),and the influence of voltage regulation control on HMIIF is analyzed.
文摘An input-output signal selection based on Phillips-Heffron model of a parallel high voltage alternative current/high voltage direct current(HVAC/HVDC) power system is presented to study power system stability. It is well known that appropriate coupling of inputs-outputs signals in the multivariable HVDC-HVAC system can improve the performance of designed supplemetary controller. In this work, different analysis techniques are used to measure controllability and observability of electromechanical oscillation mode. Also inputs–outputs interactions are considered and suggestions are drawn to select the best signal pair through the system inputs-outputs. In addition, a supplementary online adaptive controller for nonlinear HVDC to damp low frequency oscillations in a weakly connected system is proposed. The results obtained using MATLAB software show that the best output-input for damping controller design is rotor speed deviation as out put and phase angle of rectifier as in put. Also response of system equipped with adaptive damping controller based on HVDC system has appropriate performance when it is faced with faults and disturbance.
文摘A novel topology low-voltage high precision current reference based on subthreshold Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) is presented. The circuit achieves a temperature-independent reference current by a proper combination current of two first-order temperature-compensation current references, which exploit the temperature characteristics of integrated poly2 resistors and the 1- V transconductance characteristics of MOSFET operating in the subthreshold region. The circuit, designed with the 1 st silicon 0.35 μm standard CMOS logic process technology, exhibits a stable current of about 2.25 μA with much low temperature coefficient of 3 × 10^-4μA/℃ in the temperature range of-40-150 ℃ at 1 V supply voltage, and also achieves a better power supply rejection ratio (PSRR) over a broad frequency. The PSRR is about -78 dB at DC and remains -42 dB at the frequency higher than 10 MHz. The maximal process error is about 6,7% based on the Monte Carlo simulation. So it has good process compatibility.
文摘A threshold-voltage-based 2-D theoretical model for the Current–Voltage characteristics of the AlGaN/GaN high electron mobility transistors (HEMT’s) is developed. The present work proposes an improved charge-control model by employing the Robin boundary condition when introduced the solution of the 2-D Poisson’s equation in the density of charge depleted in the AlGaN layer. The dependence of 2-DEG sheet carrier concentration on the aluminum composition and AlGaN layer thickness has been investigated in detail. Current–voltage characteristics developed from the 2-DEG model in order to take into account the impact of gate lengths. The relation between the kink effect and existing deep centers has also been confirmed by using an electrical approach, which can allow to adjust some of electron transport parameters in order to optimize the output current.
基金This work was supported in part by the National Natural Science Foundation of China under 61374125。
文摘This paper presents an improved finite control set model predictive current control(FCS-MPCC)of a five-phase permanent magnet synchronous motor(PMSM).First,to avoid including all the 32 voltage vectors provided by a two-level five-phase inverter into the control set,virtual voltage vectors are adopted.As the third current harmonics can be much reduced by virtual voltage vectors automatically,the harmonic items in the cost function of conventional FCS-MPCC are not considered.Furthermore,an adaptive control set is proposed based on voltage prediction.Best control set with proper voltage vector amplitude corresponding to different rotor speed can be achieved by this method.Consequently,current ripples can be largely reduced and the system performs much better.At last,simulations are established to verify the steady and transient performance of the proposed FCS-MPCC,and experiments based on a 2 kW five-phase motor are carried out.The results have validated the performance improvement of the proposed control strategy.
基金the National Natural Science Foundation of China, No.30903123, 30901329the Project of Science and Technology of Jilin Province, No.20090741, 20090185
文摘Activin A, which was first described in 1986, has been shown to maintain hippocampal neuronal survival. Activin A increases intracellular free Ca2+ via L-type Ca2+ channels. Our previous study showed that activin A promotes neurite growth of dorsal root ganglia in embryonic chickens and inhibits nitric oxide secretion. The present study demonstrated for the first time that activin A could maintain cerebral cortex neuronal survival in vitro for a long period, and that activin A was shown to increase voltage-gated Na+ current (/Na) in Neuro-2a cells, which was recorded by patch clamp technique. The present study revealed a novel mechanism for activin A, as well as the influence of activin A on neurons by regulating expressions of vasoactive intestine peptide and inducible nitric oxide synthase.