Based on the geochemical,seismic,logging and drilling data,the Fuyu reservoirs of the Lower Cretaceous Quantou Formation in northern Songliao Basin are systematically studied in terms of the geological characteristics...Based on the geochemical,seismic,logging and drilling data,the Fuyu reservoirs of the Lower Cretaceous Quantou Formation in northern Songliao Basin are systematically studied in terms of the geological characteristics,the tight oil enrichment model and its major controlling factors.First,the Quantou Formation is overlaid by high-quality source rocks of the Upper Cretaceous Qingshankou Formation,with the development of nose structure around sag and the broad and continuous distribution of sand bodies.The reservoirs are tight on the whole.Second,the configuration of multiple elements,such as high-quality source rocks,reservoir rocks,fault,overpressure and structure,controls the tight oil enrichment in the Fuyu reservoirs.The source-reservoir combination controls the tight oil distribution pattern.The pressure difference between source and reservoir drives the charging of tight oil.The fault-sandbody transport system determines the migration and accumulation of oil and gas.The positive structure is the favorable place for tight oil enrichment,and the fault-horst zone is the key part of syncline area for tight oil exploration.Third,based on the source-reservoir relationship,transport mode,accumulation dynamics and other elements,three tight oil enrichment models are recognized in the Fuyu reservoirs:(1)vertical or lateral migration of hydrocarbon from source rocks to adjacent reservoir rocks,that is,driven by overpressure,hydrocarbon generated is migrated vertically or laterally to and accumulates in the adjacent reservoir rocks;(2)transport of hydrocarbon through faults between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downward through faults to the sandbodies that are separated from the source rocks;and(3)migration of hydrocarbon through faults and sandbodies between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downwards through faults to the reservoir rocks that are separated from the source rocks,and then migrates laterally through sandbodies.Fourth,the differences in oil source conditions,charging drive,fault distribution,sandbody and reservoir physical properties cause the differential enrichment of tight oil in the Fuyu reservoirs.Comprehensive analysis suggests that the Fuyu reservoir in the Qijia-Gulong Sag has good conditions for tight oil enrichment and has been less explored,and it is an important new zone for tight oil exploration in the future.展开更多
Based on the combination of core observation,experimental analysis and testingand geological analysis,the main controlling factors of shale oil enrichment in the Lower Permian Fengcheng Formation in the Mahu Sag of th...Based on the combination of core observation,experimental analysis and testingand geological analysis,the main controlling factors of shale oil enrichment in the Lower Permian Fengcheng Formation in the Mahu Sag of the Junggar Basin are clarified,and a shale oil enrichment model is established.The results show that the enrichment of shale oil in the Fengcheng Formation in the Mahu Sag is controlled by the organic abundance,organic type,reservoir capacity and the amount of migration hydrocarbon in shale.The abundance of organic matter provides the material basis for shale oil enrichment,and the shales containing typesⅠandⅡorganic matters have good oil content.The reservoir capacity controls shale oil enrichment.Macropores are the main space for shale oil enrichment in the Fengcheng Formation,and pore size and fracture scale directly control the degree of shale oil enrichment.The migration of hydrocarbons in shale affects shale oil enrichment.The shale that has expelled hydrocarbons has poor oil content,while the shale that has received hydrocarbons migrated from other strata has good oil content.Lithofacies reflect the hydrocarbon generation and storage capacity comprehensively.The laminated felsic shale,laminated lime-dolomitic shale and thick-layered felsic shale have good oil content,and they are favorable lithofacies for shale oil enrichment.Under the control of these factors,relative migration of hydrocarbons occurred within the Fengcheng shale,which leads to the the difference in the enrichment process of shale oil.Accordingly,the enrichment mode of shale oil in Fengcheng Formation is established as"in-situ enrichment"and"migration enrichment".By superimposing favorable lithofacies and main controlling factors of enrichment,the sweet spot of shale oil in the Fengcheng Formation can be selected which has great significance for the exploration and development of shale oil.展开更多
On-site monitoring is very important for understanding formation mechanisms of frost hazards frequently occurring in pipeline foundation soils and for designing and deploying according mitigative measures in permafros...On-site monitoring is very important for understanding formation mechanisms of frost hazards frequently occurring in pipeline foundation soils and for designing and deploying according mitigative measures in permafrost regions.Significant thaw subsidence of ground surfaces along the ChinaRussia Crude Oil Pipeline(CRCOP) from Mo'he to Daqing,Heilongjiang Province,Northeast China have been observed at some segments underlain by ice-rich warm(>1.0°C) permafrost since the official operation in January 2011.Recent monitoring results of the thermal states of foundation soils at the kilometer post(KP) 304 site along the CRCOP are presented in this paper.The results indicate that during the period from 2012 to 2014,shallow soils(at the depths from0.8 to 4.0 m from ground surface) has warmed by approximately 1.0°C in the lateral range of 1.2 to 2.1 maway from the pipeline axis,and deeper permafrost(such as at the depth of 15 m,or the depth of zero annual amplitude of ground temperatures) by 0.08°C per year 4 m away from the pipe axis,and 0.07°C per year 5 m away from the pipeline axis.The results indicate an all-season talik has developed around and along the CRCOP.The thaw bulb,with a faster lateral expansion(compared with the vertical growth),enlarges in summer and shrinks in winter.This research will provide important references and bases for evaluating thermal influences of warm pipeline on permafrost and for design,construction,operation and maintenance of pipelines in permafrost regions.展开更多
The Yanchang Formation Chang 7 oil-bearing layer of the Ordos Basin is important in China for producing shale oil.The present-day in situ stress state is of practical implications for the exploration and development o...The Yanchang Formation Chang 7 oil-bearing layer of the Ordos Basin is important in China for producing shale oil.The present-day in situ stress state is of practical implications for the exploration and development of shale oil;however,few studies are focused on stress distributions within the Chang 7 reservoir.In this study,the present-day in situ stress distribution within the Chang 7 reservoir was predicted using the combined spring model based on well logs and measured stress data.The results indicate that stress magnitudes increase with burial depth within the Chang 7 reservoir.Overall,the horizontal maximum principal stress(SHmax),horizontal minimum principal stress(Shmin) and vertical stress(Sv) follow the relationship of Sv≥SHmax>Shmin,indicating a dominant normal faulting stress regime within the Chang 7 reservoir of Ordos Basin.Laterally,high stress values are mainly distributed in the northwestern parts of the studied region,while low stress values are found in the southeastern parts.Factors influencing stress distributions are also analyzed.Stress magnitudes within the Chang 7 reservoir show a positive linear relationship with burial depth.A larger value of Young's modulus results in higher stress magnitudes,and the differential horizontal stress becomes higher when the rock Young's modulus grows larger.展开更多
In this study, the main factors influencing the measurements by means of the off-line low-field 1H NMR in the lab were discussed base on a robust calibration model established by the PLS algorithm using 255 crude oil ...In this study, the main factors influencing the measurements by means of the off-line low-field 1H NMR in the lab were discussed base on a robust calibration model established by the PLS algorithm using 255 crude oil samples. The preheating temperature had a great influence on the viscosity of oil samples and the resolution of spectral analysis. The repeatability of spectral measurements was impacted by the metal and wax content of the oil samples. For the case of high wax content oils, the wax species began to crystallize in the course of determination that could affect the repeatability of spectral measurements. These factors have evidenced why the preheating devices and filter unit are necessary when low field NMR system is used in the online analysis process. The investigation is very important for the on-line application of the low field NMR.展开更多
In order to evaluate the geological characteristics and gas-bearing factors of Niutitang Formation within the Lower Cambrian of northern Guizhou,the Huangping area located at the southern edge of the ancient uplift be...In order to evaluate the geological characteristics and gas-bearing factors of Niutitang Formation within the Lower Cambrian of northern Guizhou,the Huangping area located at the southern edge of the ancient uplift belt of Xuefeng Mountain was selected as the target area,and Well Huangdi 1 was drilled for the geological survey of shale gas.Through geological background analysis and well logging and laboratory analysis such as organic geochemical test,gas content analysis,isothermal adsorption,and specific surface area experiments on Well Huangdi 1,the results show that the Niutitang Formation is a deep-water shelf,trough-like folds and thrust fault.The thickness of black shale is 119.95 m,of which carbonaceous shale is 89.6 m.The average value of organic carbon content is 3.55%,kerogen vitrinite reflectance value is 2.37% and kerogen type is sapropel-type.The brittle mineral content is 51%(quartz 38%),clay mineral content is 38.3%.The value of porosity and permeability are 0.5%and 0.0014 mD,which the reservoir of the Niutitang Formation belongs to low permeability with characteristics of ultra-low porosity.The gas content is 0.09‒1.31 m^3/t with a high-value area and a second high-value area.By comparing with the geological parameters of adjacent wells in the adjacent area,the accumulation model of“sediment control zone,Ro control zone,structure controlling reservoir”in the study area is proposed.Therefore,deep-water shelf-slope facies,Ro is between high maturity-early stage of overmaturity and well-preserved zones in the Niutitang Formation in this area are favorable direction for the next step of shale gas exploration.展开更多
A set of shale-dominated source rocks series were deposited during the heyday of lake basin development in the Member 7 of Triassic Yanchang Formation,Ordos Basin,and the thickness is about 110 m.Aimed at whether this...A set of shale-dominated source rocks series were deposited during the heyday of lake basin development in the Member 7 of Triassic Yanchang Formation,Ordos Basin,and the thickness is about 110 m.Aimed at whether this layer can form large-scale oil enrichment of industrial value,comprehensive geological research and exploration practice have been carried out for years and obtained the following important geologic findings.Firstly,widely distributed black shale and dark mudstone with an average organic matter abundance of 13.81%and 3.74%,respectively,lay solid material foundation for the formation of shale oil.Secondly,sandy rocks sandwiched in thick organic-rich shale formations constitute an oil-rich"sweet spot",the average thickness of thin sandstone is 3.5 m.Thirdly,fine-grained sandstone and siltstone reservoirs have mainly small pores of 2–8μm and throats of 20–150 nm in radius,but with a large number of micro-pores and nano-throats,through fracturing,the reservoirs can provide good conductivity for the fluid in it.Fourthly,continued high-intensity hydrocarbon generation led to a pressure difference between the source rock and thin-layer reservoir of up to 8–16 MPa during geological history,driven by the high pressure,the oil charged into the reservoirs in large area,with oil saturation reaching more than 70%.Under the guidance of the above theory,in 2019,the Qingcheng Oilfield with geologic oil reserves of billion ton order was proved in the classⅠmulti-stage superimposed sandstone shale reservoir of Chang 7 Member by the Changqing Oilfield Branch through implementation of overall exploration and horizontal well volume fracturing.Two risk exploration horizontal wells were deployed for the classⅡthick layer mud shale interbedded with thin layers of silt-and fine-sandstones reservoir in the Chang 73 submember,and they were tested high yield oil flows of more than 100 tons per day,marking major breakthroughs in petroleum exploration in classⅠshale reservoirs.The new discoveries have expanded the domain of unconventional petroleum exploration.展开更多
It is of real and direct significance for China to cope with oil price fluctuations and ensure oil security. This paper aims to quantitatively analyze the specific contribution ratios of the complex factors influencin...It is of real and direct significance for China to cope with oil price fluctuations and ensure oil security. This paper aims to quantitatively analyze the specific contribution ratios of the complex factors influencing international crude oil prices and to establish crude oil price models to forecast long-term international crude oil prices. Six explanatory influential variables, namely Dow Jones Indexes, the Organization for Economic Cooperation and Development oil stocks, US rotary rig count, US dollar index, total open interest, which is the total number of outstanding contracts that are held by market participants at the end of each day, and geopolitical instability are specified, and the samples, from January 1990 to August 2017, are divided into six sub-periods. Moreover, the co-integration relationship among variables shows that the contribution ratios of all the variables influencing Brent crude oil prices are in accordance with the corresponding qualitative analysis. Furthermore, from September 2017 to December 2022 outside of the sample, the Vector Autoregressive forecasts show that annually averaged Brent crude oil prices for 2017-2022 would be $53.0, $61.3, $74.4, $90.0, $105.5, and $120.7 per barrel, respectively. The Vector Error Correction forecasts show that annual average Brent crude oil prices for 2017-2022 would be $53.0, $56.5, $58.5, $60.7, $63.0 and $65.4 per barrel, respectively.展开更多
Taking tight oil in Gaotaizi and Fuyu oil layers of the Upper Cretaceous Qingshankou Formation in northern Songliao Basin as an example, based on analyses of nuclear magnetic resonance and high pressure mercury inject...Taking tight oil in Gaotaizi and Fuyu oil layers of the Upper Cretaceous Qingshankou Formation in northern Songliao Basin as an example, based on analyses of nuclear magnetic resonance and high pressure mercury injection, experiment methods of supercritical carbon dioxide displacement and extraction are firstly employed to quantify crude oil mobility in tight sand reservoirs with different lithologies and oil contents. The results show that, under the conditions of simulating the Cretaceous Qingshankou Formation in the northern Songliao Basin at a temperature of 76-89 °C and a pressure of 35-42 MPa, the lower limit of the porosity of the movable oil is4.4%, and the lower limit of the permeability is 0.015′10-3 mm2. The lower limit of the average pore throat radius is 21 nm. On this basis,a classification standard for three types of tight sand reservoirs is proposed. Type I reservoirs are characterized by the movable fluid saturation larger than 40%, the movable oil ratio(ratio of movable oil to total oil) greater than 30% and the starting pressure gradient in the range of 0.3-0.6 MPa/m; Type II reservoirs are characterized by the movable fluid saturation in the range of 10%–40%, the movable oil ratio in the range of 5%–30% and the starting pressure gradient in the range of 0.6–1.0 MPa/m; Type III reservoirs are characterized by the movable fluid saturation less than 10% in general, the movable oil ratio less than 5%, and the starting pressure gradient greater than1.0 MPa/m. The fluid mobility in tight sand reservoirs is mainly affected by diagenesis and sedimentary environment. Reservoirs with depth lower than 2000 m are dominated by type I reservoir, whereas those with greater depth are dominated by type I and II reservoirs.Reservoirs in inner delta-front facies are dominated by type I reservoir, whereas those in outer delta-front facies and shore-shallow lacustrine facies are dominated by type II and III reservoirs.展开更多
In this paper,we apply the spatial panel model to explore the relationship between the dynamic of two types of crude oil prices(WTI and Brent crude oil)and their refined products over time.Considering the turbulent mo...In this paper,we apply the spatial panel model to explore the relationship between the dynamic of two types of crude oil prices(WTI and Brent crude oil)and their refined products over time.Considering the turbulent months of 2011,when Cushing Oklahoma had reached capacity and the crude oil export ban removal in 2015 as breakpoints,we apply this method both in the full sample and the three resultant regimes.First,results suggest our results show that both WTI and Brent display very similar behaviour with the refined products.Second,when attending to each regime,results derived from the first and third regimes are quite similar to the full sample results.Therefore,during the second regime,Brent crude oil became the benchmark in the petrol market,and it influenced the distillate products.Furthermore,our model can let us determine the price-setters and price-followers in the price formation mechanism through refined products.These results possess important considerations to policymakers and the market participants and the price formation.展开更多
Background: Groundwater is an important source of water. Since the control and removal of pollution are expensive, it is essential to identify the possible sources of contamination and to correctly classify groundwate...Background: Groundwater is an important source of water. Since the control and removal of pollution are expensive, it is essential to identify the possible sources of contamination and to correctly classify groundwater on the basis of its intrinsic and integrated vulnerability. Objectives: To group ground water chemical ions and heavy metals parameters into similar groups. Method: The investigation made use of standard analytical procedures. All sampling, conservation, transportation and analysis followed standard procedures described in APHA (2012). To prevent degradation of the organic substances, all obtained samples were transferred to the laboratory, while kept in an icebox. Results: Sampling records from the same area are generally assigned to the same cluster during hierarchical cluster analysis (HCA). The cluster diagram shows the grouping of the heavy metal in the study area during wet and dry seasons. It reveals that 5 distinct clusters were identified for wet season and 4 clusters were identified during dry season. Also, it reveals that 5 distinct clusters were identified for wet season and for dry season, 4 distinct clusters were identified. Conclusion: The findings of this study are significant for policymakers and agencies in terms of dealing with the issues identified to enhance sustainable livelihood practices in the oil rich Niger Delta region of Nigeria. Therefore, decision-makers should take proper initiatives to get local people aware of the endangered zones before use, as drinking water is key to good health. Similarly, multinational oil companies will find it useful in their quest for viable social corporate responsibility and remediation plans in their respective host communities. The method proved to be a useful and objective tool for environmental planning.展开更多
Although petroleum is an important source of energy and an economic driver of growth,it is also a major soil pollutant that has destroyed large swathes of vegetation and forest cover.Therefore,it is vital to develop a...Although petroleum is an important source of energy and an economic driver of growth,it is also a major soil pollutant that has destroyed large swathes of vegetation and forest cover.Therefore,it is vital to develop affordable and efficient methods for the bioremediation of petroleum-contaminated forest soils to restore vegetation and improve tree survival rates.In this study,bioremediation experiments were performed in an electrically heated thermostatic reactor to test the effects of organic matter additives,surfactants,and oxygen providers of nine hydrocarbon-degrading fungal strains on crude oil removal rates.In the three soil temperatures tested(20℃,25℃,and 30℃),the highest average crude oil removal rate was at 25℃(74.8%)and the lowest at 30℃(49.4%).At each temperature,variations in the addition of organic matter and oxygen providers had significant effects on crude oil removal rate.Variations in surfactant addition was significant at 20℃ and 25℃ but insignificant at 30℃.Given the same surfactant treatment,variations in temperature,organic additives,and oxygen providers was significant for crude oil removal rate.Treatments without surfactants and treatments with Tween80 exhibited their highest crude oil removal rates at 25℃.However,treatments that included the SDS surfactant exhibited their highest crude oil removal rates at 30℃.Amongst the treatments without surfactants,treatments with corn cob addition had the highest crude oil removal rates,and with surfactants,treatments that included the organic fertilizer exhibited the highest crude oil removal rates.Given the same organic fertilizer treatment,the highest crude oil removal rate was at 25℃.At each level of oxygen availability,the maximum crude oil removal rate always occurred at 25℃,and the treatments that included organic fertilizer exhibited the highest crude oil removal rates.Amongst the treatments without oxygen providers,treatments without surfactants had the highest crude oil removal rates,and with an oxygen provider,treatments with SDS addition exhibited the highest crude oil removal rates.Based on the crude oil removal rates of the treatments,we determined that S_(1)W_(1)O_(1)(addition of Tween80,organic fertilizers,and H_(2)O_(2))was optimum for remediating petroleum-contaminated forest soils in cold,high-altitude regions.This study is helpful to vegetation restoration and reforestation on petroleum contaminated forestlands.展开更多
Increase in requirement of hydrosulphuric water for improvement of the population set the task of identification of places of their possible congestion for hydrogeological service. Earlier detection of such congestion...Increase in requirement of hydrosulphuric water for improvement of the population set the task of identification of places of their possible congestion for hydrogeological service. Earlier detection of such congestions was accidental at well-drilling of different function. Therefore, development of new methodical approaches of search and allocation of perspective zones of their formation was required. It was for this purpose necessary to study in what conditions and what factors have an impact on formation of underground hydrosulphuric water. So far, definition of communication attempts only with separate geochemical signs was known. Results of studying of influence on formations of hydrosulphuric water of such factors as lithologic and facial in combination with oil-and-gas content, the geological and structural and hydrodynamic mode are given in this work. It is established that the main sign for formation of hydrosulphuric water is existence of evaporite thickness and hydrocarbon congestions. Besides, it is shown that small depth (up to 2 km) of their bedding has to be an indispensable condition and existence of explosive violation on which there has to be a water infiltration (a geological and structural factor). In the Surkhandarya region, the hydrodynamic mode caused by inclined bedding of aquifers was also one of essential factors. Active water is an exchange process with washing away (oxidation) sulfate of the containing thicknesses and subsequently, its restoration in interaction with hydrocarbons with formation of hydrosulphuric water is described. The technique is developed and the expected card of perspective zones of formation of hydrosulphuric water is constructed.展开更多
基金Supported by the PetroChina Science and Technology Major Project(2016E0201)。
文摘Based on the geochemical,seismic,logging and drilling data,the Fuyu reservoirs of the Lower Cretaceous Quantou Formation in northern Songliao Basin are systematically studied in terms of the geological characteristics,the tight oil enrichment model and its major controlling factors.First,the Quantou Formation is overlaid by high-quality source rocks of the Upper Cretaceous Qingshankou Formation,with the development of nose structure around sag and the broad and continuous distribution of sand bodies.The reservoirs are tight on the whole.Second,the configuration of multiple elements,such as high-quality source rocks,reservoir rocks,fault,overpressure and structure,controls the tight oil enrichment in the Fuyu reservoirs.The source-reservoir combination controls the tight oil distribution pattern.The pressure difference between source and reservoir drives the charging of tight oil.The fault-sandbody transport system determines the migration and accumulation of oil and gas.The positive structure is the favorable place for tight oil enrichment,and the fault-horst zone is the key part of syncline area for tight oil exploration.Third,based on the source-reservoir relationship,transport mode,accumulation dynamics and other elements,three tight oil enrichment models are recognized in the Fuyu reservoirs:(1)vertical or lateral migration of hydrocarbon from source rocks to adjacent reservoir rocks,that is,driven by overpressure,hydrocarbon generated is migrated vertically or laterally to and accumulates in the adjacent reservoir rocks;(2)transport of hydrocarbon through faults between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downward through faults to the sandbodies that are separated from the source rocks;and(3)migration of hydrocarbon through faults and sandbodies between separated source and reservoirs,that is,driven by overpressure,hydrocarbon migrates downwards through faults to the reservoir rocks that are separated from the source rocks,and then migrates laterally through sandbodies.Fourth,the differences in oil source conditions,charging drive,fault distribution,sandbody and reservoir physical properties cause the differential enrichment of tight oil in the Fuyu reservoirs.Comprehensive analysis suggests that the Fuyu reservoir in the Qijia-Gulong Sag has good conditions for tight oil enrichment and has been less explored,and it is an important new zone for tight oil exploration in the future.
文摘Based on the combination of core observation,experimental analysis and testingand geological analysis,the main controlling factors of shale oil enrichment in the Lower Permian Fengcheng Formation in the Mahu Sag of the Junggar Basin are clarified,and a shale oil enrichment model is established.The results show that the enrichment of shale oil in the Fengcheng Formation in the Mahu Sag is controlled by the organic abundance,organic type,reservoir capacity and the amount of migration hydrocarbon in shale.The abundance of organic matter provides the material basis for shale oil enrichment,and the shales containing typesⅠandⅡorganic matters have good oil content.The reservoir capacity controls shale oil enrichment.Macropores are the main space for shale oil enrichment in the Fengcheng Formation,and pore size and fracture scale directly control the degree of shale oil enrichment.The migration of hydrocarbons in shale affects shale oil enrichment.The shale that has expelled hydrocarbons has poor oil content,while the shale that has received hydrocarbons migrated from other strata has good oil content.Lithofacies reflect the hydrocarbon generation and storage capacity comprehensively.The laminated felsic shale,laminated lime-dolomitic shale and thick-layered felsic shale have good oil content,and they are favorable lithofacies for shale oil enrichment.Under the control of these factors,relative migration of hydrocarbons occurred within the Fengcheng shale,which leads to the the difference in the enrichment process of shale oil.Accordingly,the enrichment mode of shale oil in Fengcheng Formation is established as"in-situ enrichment"and"migration enrichment".By superimposing favorable lithofacies and main controlling factors of enrichment,the sweet spot of shale oil in the Fengcheng Formation can be selected which has great significance for the exploration and development of shale oil.
基金supported by the National Natural Science Foundation Program of China on"Formation mechanisms and mitigative measures for thaw settlement of foundation soils of the China-Russia Crude Oil Pipeline"(Grant No.41171055)the State Key Laboratory of Frozen Soils Engineering Research Projects of China on"Monitoring on thaw settlement of permafrost around the China-Russia Crude Oil Pipeline"(Grant No.SKLFSE-ZY-11)and"Research on isotope tracing and radar detection of permafrost along the China-Russia Crude Oil Pipeline route"(Grant No.SKLFSE-201302)
文摘On-site monitoring is very important for understanding formation mechanisms of frost hazards frequently occurring in pipeline foundation soils and for designing and deploying according mitigative measures in permafrost regions.Significant thaw subsidence of ground surfaces along the ChinaRussia Crude Oil Pipeline(CRCOP) from Mo'he to Daqing,Heilongjiang Province,Northeast China have been observed at some segments underlain by ice-rich warm(>1.0°C) permafrost since the official operation in January 2011.Recent monitoring results of the thermal states of foundation soils at the kilometer post(KP) 304 site along the CRCOP are presented in this paper.The results indicate that during the period from 2012 to 2014,shallow soils(at the depths from0.8 to 4.0 m from ground surface) has warmed by approximately 1.0°C in the lateral range of 1.2 to 2.1 maway from the pipeline axis,and deeper permafrost(such as at the depth of 15 m,or the depth of zero annual amplitude of ground temperatures) by 0.08°C per year 4 m away from the pipe axis,and 0.07°C per year 5 m away from the pipeline axis.The results indicate an all-season talik has developed around and along the CRCOP.The thaw bulb,with a faster lateral expansion(compared with the vertical growth),enlarges in summer and shrinks in winter.This research will provide important references and bases for evaluating thermal influences of warm pipeline on permafrost and for design,construction,operation and maintenance of pipelines in permafrost regions.
基金financial supports are from the National Natural Science Foundation of China (41702130 and 41971335)China Postdoctoral Science Foundation (2017T100419 and 2019M660269)Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)。
文摘The Yanchang Formation Chang 7 oil-bearing layer of the Ordos Basin is important in China for producing shale oil.The present-day in situ stress state is of practical implications for the exploration and development of shale oil;however,few studies are focused on stress distributions within the Chang 7 reservoir.In this study,the present-day in situ stress distribution within the Chang 7 reservoir was predicted using the combined spring model based on well logs and measured stress data.The results indicate that stress magnitudes increase with burial depth within the Chang 7 reservoir.Overall,the horizontal maximum principal stress(SHmax),horizontal minimum principal stress(Shmin) and vertical stress(Sv) follow the relationship of Sv≥SHmax>Shmin,indicating a dominant normal faulting stress regime within the Chang 7 reservoir of Ordos Basin.Laterally,high stress values are mainly distributed in the northwestern parts of the studied region,while low stress values are found in the southeastern parts.Factors influencing stress distributions are also analyzed.Stress magnitudes within the Chang 7 reservoir show a positive linear relationship with burial depth.A larger value of Young's modulus results in higher stress magnitudes,and the differential horizontal stress becomes higher when the rock Young's modulus grows larger.
基金the financial support from the SINOPEC (ST 13028)
文摘In this study, the main factors influencing the measurements by means of the off-line low-field 1H NMR in the lab were discussed base on a robust calibration model established by the PLS algorithm using 255 crude oil samples. The preheating temperature had a great influence on the viscosity of oil samples and the resolution of spectral analysis. The repeatability of spectral measurements was impacted by the metal and wax content of the oil samples. For the case of high wax content oils, the wax species began to crystallize in the course of determination that could affect the repeatability of spectral measurements. These factors have evidenced why the preheating devices and filter unit are necessary when low field NMR system is used in the online analysis process. The investigation is very important for the on-line application of the low field NMR.
基金This research was financially supported by the National Science and Technology Major Project(2016ZX05034)project of China Gelogical Survey(DD20160181).
文摘In order to evaluate the geological characteristics and gas-bearing factors of Niutitang Formation within the Lower Cambrian of northern Guizhou,the Huangping area located at the southern edge of the ancient uplift belt of Xuefeng Mountain was selected as the target area,and Well Huangdi 1 was drilled for the geological survey of shale gas.Through geological background analysis and well logging and laboratory analysis such as organic geochemical test,gas content analysis,isothermal adsorption,and specific surface area experiments on Well Huangdi 1,the results show that the Niutitang Formation is a deep-water shelf,trough-like folds and thrust fault.The thickness of black shale is 119.95 m,of which carbonaceous shale is 89.6 m.The average value of organic carbon content is 3.55%,kerogen vitrinite reflectance value is 2.37% and kerogen type is sapropel-type.The brittle mineral content is 51%(quartz 38%),clay mineral content is 38.3%.The value of porosity and permeability are 0.5%and 0.0014 mD,which the reservoir of the Niutitang Formation belongs to low permeability with characteristics of ultra-low porosity.The gas content is 0.09‒1.31 m^3/t with a high-value area and a second high-value area.By comparing with the geological parameters of adjacent wells in the adjacent area,the accumulation model of“sediment control zone,Ro control zone,structure controlling reservoir”in the study area is proposed.Therefore,deep-water shelf-slope facies,Ro is between high maturity-early stage of overmaturity and well-preserved zones in the Niutitang Formation in this area are favorable direction for the next step of shale gas exploration.
基金Supported by the China National Science and Technology Major Project(2016ZX05050)the National Key Basic Research and Development Program(973 Program),China(2014CB239003)
文摘A set of shale-dominated source rocks series were deposited during the heyday of lake basin development in the Member 7 of Triassic Yanchang Formation,Ordos Basin,and the thickness is about 110 m.Aimed at whether this layer can form large-scale oil enrichment of industrial value,comprehensive geological research and exploration practice have been carried out for years and obtained the following important geologic findings.Firstly,widely distributed black shale and dark mudstone with an average organic matter abundance of 13.81%and 3.74%,respectively,lay solid material foundation for the formation of shale oil.Secondly,sandy rocks sandwiched in thick organic-rich shale formations constitute an oil-rich"sweet spot",the average thickness of thin sandstone is 3.5 m.Thirdly,fine-grained sandstone and siltstone reservoirs have mainly small pores of 2–8μm and throats of 20–150 nm in radius,but with a large number of micro-pores and nano-throats,through fracturing,the reservoirs can provide good conductivity for the fluid in it.Fourthly,continued high-intensity hydrocarbon generation led to a pressure difference between the source rock and thin-layer reservoir of up to 8–16 MPa during geological history,driven by the high pressure,the oil charged into the reservoirs in large area,with oil saturation reaching more than 70%.Under the guidance of the above theory,in 2019,the Qingcheng Oilfield with geologic oil reserves of billion ton order was proved in the classⅠmulti-stage superimposed sandstone shale reservoir of Chang 7 Member by the Changqing Oilfield Branch through implementation of overall exploration and horizontal well volume fracturing.Two risk exploration horizontal wells were deployed for the classⅡthick layer mud shale interbedded with thin layers of silt-and fine-sandstones reservoir in the Chang 73 submember,and they were tested high yield oil flows of more than 100 tons per day,marking major breakthroughs in petroleum exploration in classⅠshale reservoirs.The new discoveries have expanded the domain of unconventional petroleum exploration.
基金supported by the National Science Foundation of China(NSFC No.41271551/71201157)the National Key Research and Development Program(2016YFA0602700)
文摘It is of real and direct significance for China to cope with oil price fluctuations and ensure oil security. This paper aims to quantitatively analyze the specific contribution ratios of the complex factors influencing international crude oil prices and to establish crude oil price models to forecast long-term international crude oil prices. Six explanatory influential variables, namely Dow Jones Indexes, the Organization for Economic Cooperation and Development oil stocks, US rotary rig count, US dollar index, total open interest, which is the total number of outstanding contracts that are held by market participants at the end of each day, and geopolitical instability are specified, and the samples, from January 1990 to August 2017, are divided into six sub-periods. Moreover, the co-integration relationship among variables shows that the contribution ratios of all the variables influencing Brent crude oil prices are in accordance with the corresponding qualitative analysis. Furthermore, from September 2017 to December 2022 outside of the sample, the Vector Autoregressive forecasts show that annually averaged Brent crude oil prices for 2017-2022 would be $53.0, $61.3, $74.4, $90.0, $105.5, and $120.7 per barrel, respectively. The Vector Error Correction forecasts show that annual average Brent crude oil prices for 2017-2022 would be $53.0, $56.5, $58.5, $60.7, $63.0 and $65.4 per barrel, respectively.
基金Supported by the PetroChina Science and Technology Project(2012E-2603-06)
文摘Taking tight oil in Gaotaizi and Fuyu oil layers of the Upper Cretaceous Qingshankou Formation in northern Songliao Basin as an example, based on analyses of nuclear magnetic resonance and high pressure mercury injection, experiment methods of supercritical carbon dioxide displacement and extraction are firstly employed to quantify crude oil mobility in tight sand reservoirs with different lithologies and oil contents. The results show that, under the conditions of simulating the Cretaceous Qingshankou Formation in the northern Songliao Basin at a temperature of 76-89 °C and a pressure of 35-42 MPa, the lower limit of the porosity of the movable oil is4.4%, and the lower limit of the permeability is 0.015′10-3 mm2. The lower limit of the average pore throat radius is 21 nm. On this basis,a classification standard for three types of tight sand reservoirs is proposed. Type I reservoirs are characterized by the movable fluid saturation larger than 40%, the movable oil ratio(ratio of movable oil to total oil) greater than 30% and the starting pressure gradient in the range of 0.3-0.6 MPa/m; Type II reservoirs are characterized by the movable fluid saturation in the range of 10%–40%, the movable oil ratio in the range of 5%–30% and the starting pressure gradient in the range of 0.6–1.0 MPa/m; Type III reservoirs are characterized by the movable fluid saturation less than 10% in general, the movable oil ratio less than 5%, and the starting pressure gradient greater than1.0 MPa/m. The fluid mobility in tight sand reservoirs is mainly affected by diagenesis and sedimentary environment. Reservoirs with depth lower than 2000 m are dominated by type I reservoir, whereas those with greater depth are dominated by type I and II reservoirs.Reservoirs in inner delta-front facies are dominated by type I reservoir, whereas those in outer delta-front facies and shore-shallow lacustrine facies are dominated by type II and III reservoirs.
文摘In this paper,we apply the spatial panel model to explore the relationship between the dynamic of two types of crude oil prices(WTI and Brent crude oil)and their refined products over time.Considering the turbulent months of 2011,when Cushing Oklahoma had reached capacity and the crude oil export ban removal in 2015 as breakpoints,we apply this method both in the full sample and the three resultant regimes.First,results suggest our results show that both WTI and Brent display very similar behaviour with the refined products.Second,when attending to each regime,results derived from the first and third regimes are quite similar to the full sample results.Therefore,during the second regime,Brent crude oil became the benchmark in the petrol market,and it influenced the distillate products.Furthermore,our model can let us determine the price-setters and price-followers in the price formation mechanism through refined products.These results possess important considerations to policymakers and the market participants and the price formation.
文摘Background: Groundwater is an important source of water. Since the control and removal of pollution are expensive, it is essential to identify the possible sources of contamination and to correctly classify groundwater on the basis of its intrinsic and integrated vulnerability. Objectives: To group ground water chemical ions and heavy metals parameters into similar groups. Method: The investigation made use of standard analytical procedures. All sampling, conservation, transportation and analysis followed standard procedures described in APHA (2012). To prevent degradation of the organic substances, all obtained samples were transferred to the laboratory, while kept in an icebox. Results: Sampling records from the same area are generally assigned to the same cluster during hierarchical cluster analysis (HCA). The cluster diagram shows the grouping of the heavy metal in the study area during wet and dry seasons. It reveals that 5 distinct clusters were identified for wet season and 4 clusters were identified during dry season. Also, it reveals that 5 distinct clusters were identified for wet season and for dry season, 4 distinct clusters were identified. Conclusion: The findings of this study are significant for policymakers and agencies in terms of dealing with the issues identified to enhance sustainable livelihood practices in the oil rich Niger Delta region of Nigeria. Therefore, decision-makers should take proper initiatives to get local people aware of the endangered zones before use, as drinking water is key to good health. Similarly, multinational oil companies will find it useful in their quest for viable social corporate responsibility and remediation plans in their respective host communities. The method proved to be a useful and objective tool for environmental planning.
基金This study was funded by the“948”project of The State Forestry Administration,“Microbial remediation of oil-polluted soil in Daqing Area”(2008-4-34)Special Fund project of basic Scientifi c Research operating Fee of Central Universities(2572014BA16).
文摘Although petroleum is an important source of energy and an economic driver of growth,it is also a major soil pollutant that has destroyed large swathes of vegetation and forest cover.Therefore,it is vital to develop affordable and efficient methods for the bioremediation of petroleum-contaminated forest soils to restore vegetation and improve tree survival rates.In this study,bioremediation experiments were performed in an electrically heated thermostatic reactor to test the effects of organic matter additives,surfactants,and oxygen providers of nine hydrocarbon-degrading fungal strains on crude oil removal rates.In the three soil temperatures tested(20℃,25℃,and 30℃),the highest average crude oil removal rate was at 25℃(74.8%)and the lowest at 30℃(49.4%).At each temperature,variations in the addition of organic matter and oxygen providers had significant effects on crude oil removal rate.Variations in surfactant addition was significant at 20℃ and 25℃ but insignificant at 30℃.Given the same surfactant treatment,variations in temperature,organic additives,and oxygen providers was significant for crude oil removal rate.Treatments without surfactants and treatments with Tween80 exhibited their highest crude oil removal rates at 25℃.However,treatments that included the SDS surfactant exhibited their highest crude oil removal rates at 30℃.Amongst the treatments without surfactants,treatments with corn cob addition had the highest crude oil removal rates,and with surfactants,treatments that included the organic fertilizer exhibited the highest crude oil removal rates.Given the same organic fertilizer treatment,the highest crude oil removal rate was at 25℃.At each level of oxygen availability,the maximum crude oil removal rate always occurred at 25℃,and the treatments that included organic fertilizer exhibited the highest crude oil removal rates.Amongst the treatments without oxygen providers,treatments without surfactants had the highest crude oil removal rates,and with an oxygen provider,treatments with SDS addition exhibited the highest crude oil removal rates.Based on the crude oil removal rates of the treatments,we determined that S_(1)W_(1)O_(1)(addition of Tween80,organic fertilizers,and H_(2)O_(2))was optimum for remediating petroleum-contaminated forest soils in cold,high-altitude regions.This study is helpful to vegetation restoration and reforestation on petroleum contaminated forestlands.
文摘Increase in requirement of hydrosulphuric water for improvement of the population set the task of identification of places of their possible congestion for hydrogeological service. Earlier detection of such congestions was accidental at well-drilling of different function. Therefore, development of new methodical approaches of search and allocation of perspective zones of their formation was required. It was for this purpose necessary to study in what conditions and what factors have an impact on formation of underground hydrosulphuric water. So far, definition of communication attempts only with separate geochemical signs was known. Results of studying of influence on formations of hydrosulphuric water of such factors as lithologic and facial in combination with oil-and-gas content, the geological and structural and hydrodynamic mode are given in this work. It is established that the main sign for formation of hydrosulphuric water is existence of evaporite thickness and hydrocarbon congestions. Besides, it is shown that small depth (up to 2 km) of their bedding has to be an indispensable condition and existence of explosive violation on which there has to be a water infiltration (a geological and structural factor). In the Surkhandarya region, the hydrodynamic mode caused by inclined bedding of aquifers was also one of essential factors. Active water is an exchange process with washing away (oxidation) sulfate of the containing thicknesses and subsequently, its restoration in interaction with hydrocarbons with formation of hydrosulphuric water is described. The technique is developed and the expected card of perspective zones of formation of hydrosulphuric water is constructed.