期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Intercalating Ultrathin MoO_3 Nanobelts into MXene Film with Ultrahigh Volumetric Capacitance and Excellent Deformation for High-Energy-Density Devices 被引量:5
1
作者 Yuanming Wang Xue Wang +5 位作者 Xiaolong Li Rong Liu Yang Bai Huanhao Xiao Yang Liu Guohui Yuan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第9期109-122,共14页
The restacking hindrance of MXene films restricts their development for high volumetric energy density of flexible supercapacitors toward applications in miniature,portable,wearable or implantable electronic devices.A... The restacking hindrance of MXene films restricts their development for high volumetric energy density of flexible supercapacitors toward applications in miniature,portable,wearable or implantable electronic devices.A valid solution is construction of rational heterojunction to achieve a synergistic property enhancement.The introduction of spacers such as graphene,CNTs,cellulose and the like demonstrates limited enhancement in rate capability.The combination of currently reported pseudocapacitive materials and MXene tends to express the potential capacitance of pseudocapacitive materials rather than MXene,leading to low volumetric capacitance.Therefore,it is necessary to exploit more ideal candidate materials to couple with MXene for fully expressing both potentials.Herein,for the first time,high electrochemically active materials of ultrathin MoO3 nanobelts are intercalated into MXene films.In the composites,MoO3 nanobelts not only act as pillaring components to prevent restacking of MXene nanosheets for fully expressing the MXene pseudocapacitance in acidic environment but also provide considerable pseudocapacitive contribution.As a result,the optimal M/MoO3 electrode not only achieves a breakthrough in volumetric capacitance(1817 F cm-3 and 545 F g-1),but also maintains good rate capability and excellent flexibility.Moreover,the corresponding symmetric supercapacitor likewise shows a remarkable energy density of 44.6 Wh L-1(13.4 Wh kg-1),rendering the flexible electrode a promising candidate for application in high-energy-density energy storage devices. 展开更多
关键词 MXene MoO3 nanobelts Hybrid film Ultrahigh volumetric capacitance Supercapacitors
下载PDF
Scalable and fast fabrication of graphene integrated micro-supercapacitors with remarkable volumetric capacitance and flexibility through continuous centrifugal coating 被引量:3
2
作者 Xiaoyu Shi Lijun Tian +9 位作者 Sen Wang Pengchao Wen Ming Su Han Xiao Pratteek Das Feng Zhou Zhaoping Liu Chenglin Sun Zhong-Shuai Wu Xinhe Bao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期284-290,I0009,共8页
Microscale electrochemical energy storage devices,e.g., micro-supercapacitors(MSCs),possessing tailored performance and diversified form factors of lightweight,miniaturization,flexibility and exceptional integration a... Microscale electrochemical energy storage devices,e.g., micro-supercapacitors(MSCs),possessing tailored performance and diversified form factors of lightweight,miniaturization,flexibility and exceptional integration are highly necessary for the smart power sources-unitized electronics.Despite the great progress,the fabrication of MSCs combining high integration with high volumetric performance remains largely unsolved.Herein,we develop a simple,fast and scalable strategy to fabricate graphene based highly integrated MSCs by a new effective continuous centrifugal coating technique.Notably,the resulting highly conductive graphene films can act as not only patterned microelectrodes but also metal-free current collectors and interconnects,endowing modular MSCs with high integrity,remarkable flexibility,tailored voltage and capacitance output,and outstanding performance uniformity.More importantly,the strong centrifugal force and shear force generated in continuous centrifugal coating process lead to graphene films with high alignment,compactness and packing density,contributing to excellent volumetric capacitance of ~31.8 F cm^(-3) and volumetric energy density of ~2.8 mWh cm^(-3),exceeding most reported integrated MSCs.Therefore,our work paves a novel way for simple and scalable fabrication of integrated MSCs and offers promising opportunities as standalone microscale power sources for new-generation electronics. 展开更多
关键词 Integrated micro-supercapacitors Continuous centrifugal coating GRAPHENE FLEXIBILITY volumetric capacitance
下载PDF
Stress-assisted design of stiffened graphene electrode structure toward compact energy storage
3
作者 Yuzuo Wang Jing Chen +11 位作者 Huasong Qin Ke Chen Zhuangnan Li Yan Chen Juan Li Tianzhao Hu Shaorui Chen Zhijun Qiao Dianbo Ruan Quanhong Yang Yilun Liu Feng Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期478-487,I0013,共11页
The low spatial charge-storage density of porous carbons greatly limits volumetric performance in electrochemical capacitors.An increase of charge-storage density requires structural refinements to balance the trade-o... The low spatial charge-storage density of porous carbons greatly limits volumetric performance in electrochemical capacitors.An increase of charge-storage density requires structural refinements to balance the trade-offs between the porosity and density of materials,but the limited mechanical properties of carbons usually fail to withstand effective densifying processes and obtain an ideal pore structure.Herein,we design the stiffened graphene of superior bending rigidity,enabling the fine adjustments of pore structure to maximize the volumetric capacitance for the graphene-based electrodes.The inplane crumples on graphene sheets are found to contribute largely to the bending rigidity,which is useful to control the structural evolution and maintain sufficient ion-accessible surface area during the assembling process.This makes the capacitance of stiffening activated graphene keep 98%when the electrode density increases by 769%to reach 1.13 g cm^(-3) after mechanical pressure,an excellent volumetric energy density of 98.7 Wh L^(-1) in an ionic-liquid electrolyte is achieved.Our results demonstrate the role of intrinsic material properties on the performance of carbon-based electrodes for capacitive energy storage. 展开更多
关键词 SUPERCAPACITOR Activated graphene Bending rigidity volumetric capacitance Pore structure
下载PDF
Optimizing electronic structure of Mo_(2)TiC_(2)T_(x) MXene through Nb doping for enhanced electrochemical performance
4
作者 Jingyuan Zhao Wenzheng Yan +3 位作者 Zhaoxi Liu Xiaobin Liu Yapeng Tian Xinwei Cui 《Nano Research》 SCIE EI CSCD 2024年第8期7174-7181,共8页
MXene is a promising electrode material for both high volumetric capacitance and high-rate performance in supercapacitors.However,the current study has mainly focused on the monometallic element Ti_(3)C_(2)T_(x) MXene... MXene is a promising electrode material for both high volumetric capacitance and high-rate performance in supercapacitors.However,the current study has mainly focused on the monometallic element Ti_(3)C_(2)T_(x) MXene until now,while the bimetallic and multimetallic MXene have received comparatively less attention.In this work,we demonstrate that the electronic structure of the Mo_(2)TiC_(2)T_(x) MXene could be regulated by fine-tuning the content of doped Nb atoms.The enhanced electron cloud density of surface–O termination and the electron spin of the Mo atoms in the Mo_(2)TiC_(2)T_(x) MXene,leads to the boost of electric double-layer capacitor(EDLC)and improvement of pseudocapacitance.As a consequence,the electrochemical performance of Nb-doped Mo_(2)TiC_(2)T_(x) MXene(Nb-0.3-MXene)demonstrates a capacitance of 398 F·cm^(−3),roughly doubling that of the pristine Mo_(2)TiC_(2)T_(x) MXene electrode at 197 F·cm^(−3) in the 3 M H_(2)SO_(4) electrolyte.At the same time,the Nb-0.3-MXene could even maintain a capacitance of 82.75% at 200 mV·s−1,with high cyclic stability for 19,000 cycles at 10 A·g−1.Additionally,Nb-0.3-MXene-based hybrid supercapacitors deliver a remarkable volumetric energy density of 48.1 W·h·L^(−1)at 230.7 W·L^(−1),and 34.4 W·h·L^(−1)at a high power density of 82.6 kW·L^(−1).There exists a balance between the volumetric capacitance and rate performance with different ratios of Nb atoms in the Nb-doped MXene due to the strong interaction between the Nb-doped MXene and the intercalated protons.Therefore,optimizing the electronic structure of MXene through heteroatom doping is of great potential for enhanced supercapacitor performance. 展开更多
关键词 niobium doping electronic structure Mo_(2)TiC_(2)T_(x)MXene electron spin rate performance volumetric capacitance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部