Inspired by Cardano's method for solving cubic scalar equations, the addi- tive decomposition of spherical/deviatoric tensor (DSDT) is revisited from a new view- point. This decomposition simplifies the cubic tenso...Inspired by Cardano's method for solving cubic scalar equations, the addi- tive decomposition of spherical/deviatoric tensor (DSDT) is revisited from a new view- point. This decomposition simplifies the cubic tensor equation, decouples the spher- ical/deviatoric strain energy density, and lays the foundation for the von Mises yield criterion. Besides, it is verified that under the precondition of energy decoupling and the simplest form, the DSDT is the only possible form of the additive decomposition with physical meanings.展开更多
Third- and fourth-order accurate finite difference schemes for the first derivative of the square of the speed are developed, for both uniform and non-uniform grids, and applied in the study of a two-dimensional visco...Third- and fourth-order accurate finite difference schemes for the first derivative of the square of the speed are developed, for both uniform and non-uniform grids, and applied in the study of a two-dimensional viscous fluid flow through an irregular domain. The von Mises transformation is used to transform the governing equations, and map the irregular domain onto a rectangular computational domain. Vorticity on the solid boundary is expressed in terms of the first partial derivative of the square of the speed of the flow in the computational domain, and the schemes are used to calculate the vorticity at the computational boundary grid points using up to five computational domain grid points. In all schemes developed, we study the effect of coordinate clustering on the computed results.展开更多
The main objective of this research was to examine the suitability of aluminium alloy to design a piston of an internal combustion engine for improvement in weight and cost reduction. The piston was modelled using Aut...The main objective of this research was to examine the suitability of aluminium alloy to design a piston of an internal combustion engine for improvement in weight and cost reduction. The piston was modelled using Autodesk Inventor 2017 software. The modelled piston was then imported into Ansys for further analysis. Static structural and thermal analysis were carried out on the pistons of the four different materials namely: Al 413 alloy, Al 384 alloy, Al 390 alloy and Al332 alloy to determine the total deformation, equivalent Von Mises stress, maximum shear stress, and the safety factor. The results of the study revealed that, aluminium 332 alloy piston deformed less compared to the deformations of aluminium 390 alloy piston, aluminium 384 alloy piston and aluminium 413 alloy piston. The induced Von Mises stresses in the pistons of the four different materials were found to be far lower than the yield strengths of all the materials. Hence, all the selected materials including the implementing material have equal properties to withstand the maximum gas load. All the selected materials were observed to have high thermal conductivity enough to be able to withstand the operating temperature in the engine cylinders.展开更多
Although short implants are seen as alternative treatments that require additional surgical techniques in posterior region, they can be applied to anterior maxilla and various studies are required on this subject. The...Although short implants are seen as alternative treatments that require additional surgical techniques in posterior region, they can be applied to anterior maxilla and various studies are required on this subject. The purpose of this study was to examine and compare the peak von Mises stress distributions in the crown, implant and abutment by using finite element analysis (FEA). Besides, a comparison of the implant-abutment connection types in the short implant with the FEA method was established. A short implant (4 × 5 mm) with a taper-lock connection and a regular implant (4 × 9 mm) with a screw connection were used in maxillary central incisor tooth area. Three different titanium abutments with 0?, 15? and 25? angles were used for abutments. In addition, in order to determine whether the stress change in short implants is due to the length of the implant-abutment connection, a screw was designed for a short implant and it was also evaluated in the same three angles. A total of three groups and nine models were generated. 114.6N load was applied to the cingulum area of the crown at an angle of 135? to the long axis of the crowns. A torque load of 25 Ncm was applied to the regular and short implant screw. Von Mises stress distributions of implants, abutments and crowns were evaluated by using FEA. Increased angle in implants increased von Mises stress values of implant, abutment and crown. Screw connection was found higher at all angles in short implants. Close values were found at different angles in taper-lock short implant crowns. The length and the angle in the bone of implant with the type of implant-abutment connection results in the accumulated stress values. Clinical Implications Taper implant-abutment connection system was found to be more promising in terms of stress accumulation in crowns. Although the amount of stress on the abutment increased due to the length of the implant in short implants, taper implant-abutment connection system slightly reduced related to this increase.展开更多
The method of the structural topology optimization is often used to design machine in the early stage of the mechanical design.And one mechanical structure use the topology design to produce a new still and lightweigh...The method of the structural topology optimization is often used to design machine in the early stage of the mechanical design.And one mechanical structure use the topology design to produce a new still and lightweight assembly.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11072125 and11272175)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20130002110044)the China Postdoctoral Science Foundation(No.2015M570035)
文摘Inspired by Cardano's method for solving cubic scalar equations, the addi- tive decomposition of spherical/deviatoric tensor (DSDT) is revisited from a new view- point. This decomposition simplifies the cubic tensor equation, decouples the spher- ical/deviatoric strain energy density, and lays the foundation for the von Mises yield criterion. Besides, it is verified that under the precondition of energy decoupling and the simplest form, the DSDT is the only possible form of the additive decomposition with physical meanings.
文摘Third- and fourth-order accurate finite difference schemes for the first derivative of the square of the speed are developed, for both uniform and non-uniform grids, and applied in the study of a two-dimensional viscous fluid flow through an irregular domain. The von Mises transformation is used to transform the governing equations, and map the irregular domain onto a rectangular computational domain. Vorticity on the solid boundary is expressed in terms of the first partial derivative of the square of the speed of the flow in the computational domain, and the schemes are used to calculate the vorticity at the computational boundary grid points using up to five computational domain grid points. In all schemes developed, we study the effect of coordinate clustering on the computed results.
文摘The main objective of this research was to examine the suitability of aluminium alloy to design a piston of an internal combustion engine for improvement in weight and cost reduction. The piston was modelled using Autodesk Inventor 2017 software. The modelled piston was then imported into Ansys for further analysis. Static structural and thermal analysis were carried out on the pistons of the four different materials namely: Al 413 alloy, Al 384 alloy, Al 390 alloy and Al332 alloy to determine the total deformation, equivalent Von Mises stress, maximum shear stress, and the safety factor. The results of the study revealed that, aluminium 332 alloy piston deformed less compared to the deformations of aluminium 390 alloy piston, aluminium 384 alloy piston and aluminium 413 alloy piston. The induced Von Mises stresses in the pistons of the four different materials were found to be far lower than the yield strengths of all the materials. Hence, all the selected materials including the implementing material have equal properties to withstand the maximum gas load. All the selected materials were observed to have high thermal conductivity enough to be able to withstand the operating temperature in the engine cylinders.
文摘Although short implants are seen as alternative treatments that require additional surgical techniques in posterior region, they can be applied to anterior maxilla and various studies are required on this subject. The purpose of this study was to examine and compare the peak von Mises stress distributions in the crown, implant and abutment by using finite element analysis (FEA). Besides, a comparison of the implant-abutment connection types in the short implant with the FEA method was established. A short implant (4 × 5 mm) with a taper-lock connection and a regular implant (4 × 9 mm) with a screw connection were used in maxillary central incisor tooth area. Three different titanium abutments with 0?, 15? and 25? angles were used for abutments. In addition, in order to determine whether the stress change in short implants is due to the length of the implant-abutment connection, a screw was designed for a short implant and it was also evaluated in the same three angles. A total of three groups and nine models were generated. 114.6N load was applied to the cingulum area of the crown at an angle of 135? to the long axis of the crowns. A torque load of 25 Ncm was applied to the regular and short implant screw. Von Mises stress distributions of implants, abutments and crowns were evaluated by using FEA. Increased angle in implants increased von Mises stress values of implant, abutment and crown. Screw connection was found higher at all angles in short implants. Close values were found at different angles in taper-lock short implant crowns. The length and the angle in the bone of implant with the type of implant-abutment connection results in the accumulated stress values. Clinical Implications Taper implant-abutment connection system was found to be more promising in terms of stress accumulation in crowns. Although the amount of stress on the abutment increased due to the length of the implant in short implants, taper implant-abutment connection system slightly reduced related to this increase.
文摘The method of the structural topology optimization is often used to design machine in the early stage of the mechanical design.And one mechanical structure use the topology design to produce a new still and lightweight assembly.