The large eddy simulation(LES) of the flow characteristics in an annular jet pump(AJP) is conducted, and the flow characteristics are systematically analyzed from both time-averaged and instantaneous aspects. The ...The large eddy simulation(LES) of the flow characteristics in an annular jet pump(AJP) is conducted, and the flow characteristics are systematically analyzed from both time-averaged and instantaneous aspects. The jet expansion, the velocity distribution and the energy are considered to analyze the time-averaged evolution of the flow field in the AJP. The transient flow characteristics can also be acquired from the analysis of the turbulence intensity and the Reynolds stress. The simulation demonstrates that in the time-averaged characteristics, the potential cores increase linearly with the increase of the flow ratio. With the flow development, the jet half-width gradually increases and the residual energy coefficient decreases. Compared with the distribution of the time-averaged axial velocity, that of the instantaneous velocity is more complex and disorderly. The high intensity of the axial turbulence mainly occurs in the mixing layer and the near-wall regions of the diffuser. The annular distribution of the Reynolds stress is mainly in the mixing layer and the recirculation region. There is a low-stress zone between the mixing layer and the high-stress region in the wall-boundary layer. The intensity of the spanwise vortexes is larger than that of the streamwise vortexes, and therefore, the former make greater contribution to the total vorticity. This research provides a better understanding of the flow characteristics in the AJP.展开更多
Numerical simulations of the flow in the draft tube of a Francis turbine are carried out in order to elucidate the effects of tangential velocity on flow stability.Influence of the location of the maximum tangential v...Numerical simulations of the flow in the draft tube of a Francis turbine are carried out in order to elucidate the effects of tangential velocity on flow stability.Influence of the location of the maximum tangential velocity is explored considering the equality of the total energy at the inlet of the draft tube.It is found that the amplitude of the pressure fluctuation decreases when the location of the maximum of the tangential velocity moves from the centre to the wall on the cross section.Thus,the stability of the flow in the draft tube increases with the moving of the location of the maximum tangential velocity.However,the relative hydraulic loss increases and the recovery coefficient of the draft tube decreases slightly.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51179134,11472197)
文摘The large eddy simulation(LES) of the flow characteristics in an annular jet pump(AJP) is conducted, and the flow characteristics are systematically analyzed from both time-averaged and instantaneous aspects. The jet expansion, the velocity distribution and the energy are considered to analyze the time-averaged evolution of the flow field in the AJP. The transient flow characteristics can also be acquired from the analysis of the turbulence intensity and the Reynolds stress. The simulation demonstrates that in the time-averaged characteristics, the potential cores increase linearly with the increase of the flow ratio. With the flow development, the jet half-width gradually increases and the residual energy coefficient decreases. Compared with the distribution of the time-averaged axial velocity, that of the instantaneous velocity is more complex and disorderly. The high intensity of the axial turbulence mainly occurs in the mixing layer and the near-wall regions of the diffuser. The annular distribution of the Reynolds stress is mainly in the mixing layer and the recirculation region. There is a low-stress zone between the mixing layer and the high-stress region in the wall-boundary layer. The intensity of the spanwise vortexes is larger than that of the streamwise vortexes, and therefore, the former make greater contribution to the total vorticity. This research provides a better understanding of the flow characteristics in the AJP.
基金supported by the open fund of State Key Laboratory of Hydroscience and Engineer of Tsinghua University(No.sklhse-2013-E-02)the Special Major Project of Science and Technology of Zhejiang province(No.2013C 01139)
文摘Numerical simulations of the flow in the draft tube of a Francis turbine are carried out in order to elucidate the effects of tangential velocity on flow stability.Influence of the location of the maximum tangential velocity is explored considering the equality of the total energy at the inlet of the draft tube.It is found that the amplitude of the pressure fluctuation decreases when the location of the maximum of the tangential velocity moves from the centre to the wall on the cross section.Thus,the stability of the flow in the draft tube increases with the moving of the location of the maximum tangential velocity.However,the relative hydraulic loss increases and the recovery coefficient of the draft tube decreases slightly.