The pre-gate suction vortex,gate-bottom-edge transverse vortex,gate-slot vertical vortex,and downstream-of-gate return vortex are important factors affecting the flow instability of flat gates,which may lead to fatigu...The pre-gate suction vortex,gate-bottom-edge transverse vortex,gate-slot vertical vortex,and downstream-of-gate return vortex are important factors affecting the flow instability of flat gates,which may lead to fatigue failure in severe cases.This study used the volume of fluid(VOF)model and large eddy simulation(LES)method to accurately capture the transient turbulence characteristics of flow under different water flow conditions and reveal the flow field and vortex structure.The Q—criterion,Omega(Ω)method,and latest third-generation Liutex vortex identification method were used to analyze and compare the pre-gate suction vortex,gate-slot vertical vortex,and downstream-of-gate return vortex,focusing on the ability of each vortex identification method to capture the flow field information and vortex characteristics.The results reveal that theΩmethod and Liutex method are less dependent on the threshold value,and the Liutex method captures a wide range of pre-gate vortices.Different flow conditions cause changes in the vortex structure of over-gate flow.When the relative opening of the gate is smaller,the intensity of the vortices in the flow field around the gate is greater,the return vortices downstream of the gate are more disordered,and the vortex changes are more violent,which in turn affects the efficient and stable operation of the gate.展开更多
Geographic visualization is essential for explaining and describing spatiotemporal geographical processes in flow fields.However,due to multi-scale structures and irregular spatial distribution of vortices in complex ...Geographic visualization is essential for explaining and describing spatiotemporal geographical processes in flow fields.However,due to multi-scale structures and irregular spatial distribution of vortices in complex geographic flow fields,existing two-dimensional visualization methods are susceptible to the effects of data accuracy and sampling resolution,resulting in incomplete and inaccurate vortex information.To address this,we propose an adaptive Line Integral Convolution(LIC)based geographic flow field visualization method by means of rotation distance.Our novel framework of rotation distance and its quantification allows for the effective identification and extraction of vortex features in flow fields effectively.We then improve the LIC algorithm using rotation distance by constructing high-frequency noise from it as input to the convolution,with the integration step size adjusted.This approach allows us to effectively distinguish between vortex and non-vortex fields and adaptively represent the details of vortex features in complex geographic flow fields.Our experimental results show that the proposed method leads to more accurate and effective visualization of the geographic flow fields.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52069009,51369013).
文摘The pre-gate suction vortex,gate-bottom-edge transverse vortex,gate-slot vertical vortex,and downstream-of-gate return vortex are important factors affecting the flow instability of flat gates,which may lead to fatigue failure in severe cases.This study used the volume of fluid(VOF)model and large eddy simulation(LES)method to accurately capture the transient turbulence characteristics of flow under different water flow conditions and reveal the flow field and vortex structure.The Q—criterion,Omega(Ω)method,and latest third-generation Liutex vortex identification method were used to analyze and compare the pre-gate suction vortex,gate-slot vertical vortex,and downstream-of-gate return vortex,focusing on the ability of each vortex identification method to capture the flow field information and vortex characteristics.The results reveal that theΩmethod and Liutex method are less dependent on the threshold value,and the Liutex method captures a wide range of pre-gate vortices.Different flow conditions cause changes in the vortex structure of over-gate flow.When the relative opening of the gate is smaller,the intensity of the vortices in the flow field around the gate is greater,the return vortices downstream of the gate are more disordered,and the vortex changes are more violent,which in turn affects the efficient and stable operation of the gate.
文摘Geographic visualization is essential for explaining and describing spatiotemporal geographical processes in flow fields.However,due to multi-scale structures and irregular spatial distribution of vortices in complex geographic flow fields,existing two-dimensional visualization methods are susceptible to the effects of data accuracy and sampling resolution,resulting in incomplete and inaccurate vortex information.To address this,we propose an adaptive Line Integral Convolution(LIC)based geographic flow field visualization method by means of rotation distance.Our novel framework of rotation distance and its quantification allows for the effective identification and extraction of vortex features in flow fields effectively.We then improve the LIC algorithm using rotation distance by constructing high-frequency noise from it as input to the convolution,with the integration step size adjusted.This approach allows us to effectively distinguish between vortex and non-vortex fields and adaptively represent the details of vortex features in complex geographic flow fields.Our experimental results show that the proposed method leads to more accurate and effective visualization of the geographic flow fields.