Previous studies showed that 4 D-Var technique used for data assimilation could be modified for weather control. This study demonstrates the ability of 4 D-Var to influence the future path of a tropical cyclone by cal...Previous studies showed that 4 D-Var technique used for data assimilation could be modified for weather control. This study demonstrates the ability of 4 D-Var to influence the future path of a tropical cyclone by calculating perturbations in WRF simulation. Given the background error covariance matrix, the initial field is improved by the vortex dynamic initialization technique. Our results show that 4 D-Var can be applied to control the trajectory of simulated tropical cyclones by producing "optimal" perturbations. In the numerical simulation experiment of Typhoon Mitag in 2019, after this kind of weather control similar to data assimilation, the tropical cyclone moved obviously,and the damaging wind over the coastline weakened. The prediction results after the initial field modified by 4 D-Var have a great change, and the position of the tropical cyclone moved about 0.5° southeastward after assimilation,which misses the southeast coast of China. Moreover, the damaging wind is also weakened. Since the 4 D-Var is premised on the assumption that the model is perfect and does not consider the model error, then the research plan to consider model error and introduce new methods is discussed in the paper.展开更多
A statistical analysis of the initial vortexes leading to tropical cyclone(TC)formation in the western North Pacific(WNP)is conducted with the ECMWF ERA5 reanalysis data from 1999 to 2018.It is found that TCs in the W...A statistical analysis of the initial vortexes leading to tropical cyclone(TC)formation in the western North Pacific(WNP)is conducted with the ECMWF ERA5 reanalysis data from 1999 to 2018.It is found that TCs in the WNP basically originate from three kinds of vortexes,i.e.,a mid-level vortex(MV),a low-level vortex(LV),and a relatively deep vortex with notable vorticity in both the lower and middle troposphere(DV).Among them,LV and DV account for 47.9%and 24.2%of tropical cyclogenesis events,respectively,while only 27.9%of TCs develop from the MV,which is much lower than that which occurs in the North Atlantic and eastern Pacific.Such a difference might be ascribed to the active monsoon systems in the WNP all year round.Due to the nearly upright structure of mid-level convergence in the early pre-genesis stage,TC genesis efficiency is the highest in DV.Compared with MV,LV generally takes a shorter time to intensify to a TC because of the higher humidity and the stronger low-level cyclonic circulation,which is related to air-sea interaction and boundary-layer convergence.Further examination of the relationship between tropical cyclogenesis and large-scale flow patterns indicate that the TC genesis events associated with LV are primarily related to the monsoon shear line,monsoon confluence region,and monsoon gyre,while those associated with MV are frequently connected with easterly waves and wave energy dispersion of preexisting TC.Compared with other flow patterns,tropical cyclones usually form and intensify faster in the monsoon confluence region.展开更多
Using the technique of smooth filtering and cylindrical filtering,the initial vortex circulation and large-scale environmental field were separated from the background field.Then the separated initial vortex circulati...Using the technique of smooth filtering and cylindrical filtering,the initial vortex circulation and large-scale environmental field were separated from the background field.Then the separated initial vortex circulation was translated and reinserted in the location where it was observed.This led to the determination of a method of initial vortex relocation.For seven tropical cyclones at 23 points of measurement time in the years of 2006 and 2007,two schemes,either directly adding a tropical cyclone bogus model in the background or adding it after the relocation of the initial vortex in the background field,were employed.Simulation experiments were compared.The results showed that the mean errors of the simulated tropical cyclone tracks at 24 and 48 hours were both smaller with the scheme of adding tropical cyclone bogus model after the relocation of the initial vortex in the background field.The relocation method of the initial vortex decreases the error caused by the deviation of the initial tropical cyclone location in tropical cyclone models.The relocation method is conducive to improving the track forecast of tropical cyclone models and has a good perspective for operational application.展开更多
In 2019,the operational Global Regional Assimilation and Prediction System-Tropical Cyclone Model(GRAPES-TCM)was updated by adopting the characteristic parameters in the official real-time released TC data of CMA,intr...In 2019,the operational Global Regional Assimilation and Prediction System-Tropical Cyclone Model(GRAPES-TCM)was updated by adopting the characteristic parameters in the official real-time released TC data of CMA,introducing the horizontal sixth-order diffusion scheme and adjusting the operational flowchart.In the case of the Super Typhoon Lekima,the model exhibits a reliable prediction ability for the type of tropical cyclone(TC)with northwestern tracking.The track and intensity forecasts in 2019 are significantly better than those over the past five years on average.The updated model can provide a skillful forecast of landfall position and rapid weakening process.Moreover,the precipitation pattern is close to the observation.TC forecast in 2019 shows that the updated GRAPES-TCM has a smaller track error than that of the previous year,and the 24 h intensity forecasting ability is improved.展开更多
基金National Natural Science Foundation of China(41405062, 41775017)。
文摘Previous studies showed that 4 D-Var technique used for data assimilation could be modified for weather control. This study demonstrates the ability of 4 D-Var to influence the future path of a tropical cyclone by calculating perturbations in WRF simulation. Given the background error covariance matrix, the initial field is improved by the vortex dynamic initialization technique. Our results show that 4 D-Var can be applied to control the trajectory of simulated tropical cyclones by producing "optimal" perturbations. In the numerical simulation experiment of Typhoon Mitag in 2019, after this kind of weather control similar to data assimilation, the tropical cyclone moved obviously,and the damaging wind over the coastline weakened. The prediction results after the initial field modified by 4 D-Var have a great change, and the position of the tropical cyclone moved about 0.5° southeastward after assimilation,which misses the southeast coast of China. Moreover, the damaging wind is also weakened. Since the 4 D-Var is premised on the assumption that the model is perfect and does not consider the model error, then the research plan to consider model error and introduce new methods is discussed in the paper.
基金supported in part by the Nature Science Foundation of China under Grant Nos.41875046,42175004National Key Research and Development Program of China under Grant No.2017YFC1501601Shanghai“Science and Technology Innovation Action Plan”Yangtze River Delta Science and Technology Innovation Community Field Project Grant 21002410200。
文摘A statistical analysis of the initial vortexes leading to tropical cyclone(TC)formation in the western North Pacific(WNP)is conducted with the ECMWF ERA5 reanalysis data from 1999 to 2018.It is found that TCs in the WNP basically originate from three kinds of vortexes,i.e.,a mid-level vortex(MV),a low-level vortex(LV),and a relatively deep vortex with notable vorticity in both the lower and middle troposphere(DV).Among them,LV and DV account for 47.9%and 24.2%of tropical cyclogenesis events,respectively,while only 27.9%of TCs develop from the MV,which is much lower than that which occurs in the North Atlantic and eastern Pacific.Such a difference might be ascribed to the active monsoon systems in the WNP all year round.Due to the nearly upright structure of mid-level convergence in the early pre-genesis stage,TC genesis efficiency is the highest in DV.Compared with MV,LV generally takes a shorter time to intensify to a TC because of the higher humidity and the stronger low-level cyclonic circulation,which is related to air-sea interaction and boundary-layer convergence.Further examination of the relationship between tropical cyclogenesis and large-scale flow patterns indicate that the TC genesis events associated with LV are primarily related to the monsoon shear line,monsoon confluence region,and monsoon gyre,while those associated with MV are frequently connected with easterly waves and wave energy dispersion of preexisting TC.Compared with other flow patterns,tropical cyclones usually form and intensify faster in the monsoon confluence region.
基金Natural Science Foundation of China (9101501190715031+2 种基金40875026)Team Project of Foundation of Natural Science of Guangdong Province(8351030101000002)Project of Science and Technology of Guangdong Province(2008B030303025)
文摘Using the technique of smooth filtering and cylindrical filtering,the initial vortex circulation and large-scale environmental field were separated from the background field.Then the separated initial vortex circulation was translated and reinserted in the location where it was observed.This led to the determination of a method of initial vortex relocation.For seven tropical cyclones at 23 points of measurement time in the years of 2006 and 2007,two schemes,either directly adding a tropical cyclone bogus model in the background or adding it after the relocation of the initial vortex in the background field,were employed.Simulation experiments were compared.The results showed that the mean errors of the simulated tropical cyclone tracks at 24 and 48 hours were both smaller with the scheme of adding tropical cyclone bogus model after the relocation of the initial vortex in the background field.The relocation method of the initial vortex decreases the error caused by the deviation of the initial tropical cyclone location in tropical cyclone models.The relocation method is conducive to improving the track forecast of tropical cyclone models and has a good perspective for operational application.
基金supported by the National Key Research and Development Program of China(Nos.2016YFE0109700 and 2017YFC150190X)the National Natural Science Foundation of China(Grant Nos.41975133 and 41975067)+1 种基金Science&Technology Committee of Shanghai(Nos.19dz1200101 and 19dz1201500)the National Defense Pre-Research Foundation(No.305090417)。
文摘In 2019,the operational Global Regional Assimilation and Prediction System-Tropical Cyclone Model(GRAPES-TCM)was updated by adopting the characteristic parameters in the official real-time released TC data of CMA,introducing the horizontal sixth-order diffusion scheme and adjusting the operational flowchart.In the case of the Super Typhoon Lekima,the model exhibits a reliable prediction ability for the type of tropical cyclone(TC)with northwestern tracking.The track and intensity forecasts in 2019 are significantly better than those over the past five years on average.The updated model can provide a skillful forecast of landfall position and rapid weakening process.Moreover,the precipitation pattern is close to the observation.TC forecast in 2019 shows that the updated GRAPES-TCM has a smaller track error than that of the previous year,and the 24 h intensity forecasting ability is improved.