The Contra-Rotating Open Rotor(CROR)design confronts significant noise challenges despite being one of the possible options for future green aeroengines.To efficiently estimate the noise emitted from a CROR,a three-di...The Contra-Rotating Open Rotor(CROR)design confronts significant noise challenges despite being one of the possible options for future green aeroengines.To efficiently estimate the noise emitted from a CROR,a three-dimensional unsteady prediction model based on the meshless method is presented.The unsteady wake flow and the aerodynamic load fluctuations on the blade are solved through the viscous vortex particle method,the blade element momentum theory and vortex lattice method.Then,the acoustic field is obtained through the Farassat’s formulation 1A.Validation of this method is conducted on a CROR,and a mesh-based method,e.g.,Nonlinear Harmonic(NLH)method,is also employed for comparison.It is found that the presented method is three times faster than NLH method while maintaining a comparable precision.A thorough parametric analysis is also carried out to illustrate the effects of rotational speed,rotor-rotor spacing and rear rotor diameter on the noise level.The rotor speed is found to be the most influencing factor,and by optimizing the speed difference between the front and rear rotors,a notable noise reduction can be expected.The current findings not only contribute to a deeper comprehension of the CROR’s aeroacoustic properties but also offer an effective tool for engineering applications.展开更多
Electric vertical take-off and landing(eVTOL)aircraft with multiple lifting rotors or prop-rotors have received significant attention in recent years due to their great potential for next-generation urban air mobility...Electric vertical take-off and landing(eVTOL)aircraft with multiple lifting rotors or prop-rotors have received significant attention in recent years due to their great potential for next-generation urban air mobility(UAM).Numerical models have been developed and validated as predictive tools to analyze rotor aerodynamics and wake dynamics.Among various numerical approaches,the vortex method is one of the most suitable because it can provide accurate solutions with an affordable computational cost and can represent vorticity fields downstream without numerical dissipation error.This paper presents a brief review of the progress of vortex methods,along with their principles,advantages,and shortcomings.Applications of the vortex methods for modeling the rotor aerodynamics and wake dynamics are also described.However,the vortex methods suffer from the problem that it cannot deal with the nonlinear aerodynamic characteristics associated with the viscous effects and the flow behaviors in the post-stall regime.To overcome the intrinsic drawbacks of the vortex methods,recent progress in a numerical method proposed by the authors is introduced,and model validation against experimental data is discussed in detail.The validation works show that nonlinear vortex lattice method(NVLM)coupled with vortex particle method(VPM)can predict the unsteady aerodynamic forces and complex evolution of the rotor wake.展开更多
In this study, coupled equations of the motion of a particle in a fluid forced vortex were investigated using the differential transformation method (DTM) with the Pad6 approximation and the differential quadrature ...In this study, coupled equations of the motion of a particle in a fluid forced vortex were investigated using the differential transformation method (DTM) with the Pad6 approximation and the differential quadrature method (DO_M). The significant contribution of the work is the introduction of two new, fast and efficient solutions for a spherical particle in a forced vortex that are improvements over the previous numerical results in the literature. These methods represent approximations with a high degree of accuracy and minimal computational effort for studying the particle motion in a fluid forced vortex. In addition, the velocity profiles (angular and radial) and the position trajectory of a particle in a fluid forced vortex are described in the current study.展开更多
Flight dynamics modeling for the Mars helicopter faces great challenges.Aerodynamic modeling of coaxial rotor with high confidence and high computational efficiency is a major difficulty for the field.This paper build...Flight dynamics modeling for the Mars helicopter faces great challenges.Aerodynamic modeling of coaxial rotor with high confidence and high computational efficiency is a major difficulty for the field.This paper builds an aerodynamic model of coaxial rotor in the extremely thin Martian atmosphere using the viscous vortex particle method.The aerodynamic forces and flow characteristics of rigid coaxial rotor are computed and analyzed.Meanwhile,a high fidelity aerodynamic surrogate model is built to improve the computational efficiency of the flight dynamics model.Results in this paper reveal that rigid coaxial rotor can bring the Mars helicopter sufficient controllability but result in obvious instability and control couplings in forward flight.This highlights the great differences in flight dynamics characteristics compared with conventional helicopters on Earth.展开更多
基金the financial support from the National Natural Science Foundation of China(Nos.52276045 and 52206062)the Fundamental Research Funds for the Central Universities,China(Nos.3122019171,3122021087 and 3122022QD06).
文摘The Contra-Rotating Open Rotor(CROR)design confronts significant noise challenges despite being one of the possible options for future green aeroengines.To efficiently estimate the noise emitted from a CROR,a three-dimensional unsteady prediction model based on the meshless method is presented.The unsteady wake flow and the aerodynamic load fluctuations on the blade are solved through the viscous vortex particle method,the blade element momentum theory and vortex lattice method.Then,the acoustic field is obtained through the Farassat’s formulation 1A.Validation of this method is conducted on a CROR,and a mesh-based method,e.g.,Nonlinear Harmonic(NLH)method,is also employed for comparison.It is found that the presented method is three times faster than NLH method while maintaining a comparable precision.A thorough parametric analysis is also carried out to illustrate the effects of rotational speed,rotor-rotor spacing and rear rotor diameter on the noise level.The rotor speed is found to be the most influencing factor,and by optimizing the speed difference between the front and rear rotors,a notable noise reduction can be expected.The current findings not only contribute to a deeper comprehension of the CROR’s aeroacoustic properties but also offer an effective tool for engineering applications.
基金The National Research Foundation of Korea(NRF-2017-R1A5A1015311 and 2021R1C1C1010198),South Korea.Author information。
文摘Electric vertical take-off and landing(eVTOL)aircraft with multiple lifting rotors or prop-rotors have received significant attention in recent years due to their great potential for next-generation urban air mobility(UAM).Numerical models have been developed and validated as predictive tools to analyze rotor aerodynamics and wake dynamics.Among various numerical approaches,the vortex method is one of the most suitable because it can provide accurate solutions with an affordable computational cost and can represent vorticity fields downstream without numerical dissipation error.This paper presents a brief review of the progress of vortex methods,along with their principles,advantages,and shortcomings.Applications of the vortex methods for modeling the rotor aerodynamics and wake dynamics are also described.However,the vortex methods suffer from the problem that it cannot deal with the nonlinear aerodynamic characteristics associated with the viscous effects and the flow behaviors in the post-stall regime.To overcome the intrinsic drawbacks of the vortex methods,recent progress in a numerical method proposed by the authors is introduced,and model validation against experimental data is discussed in detail.The validation works show that nonlinear vortex lattice method(NVLM)coupled with vortex particle method(VPM)can predict the unsteady aerodynamic forces and complex evolution of the rotor wake.
文摘In this study, coupled equations of the motion of a particle in a fluid forced vortex were investigated using the differential transformation method (DTM) with the Pad6 approximation and the differential quadrature method (DO_M). The significant contribution of the work is the introduction of two new, fast and efficient solutions for a spherical particle in a forced vortex that are improvements over the previous numerical results in the literature. These methods represent approximations with a high degree of accuracy and minimal computational effort for studying the particle motion in a fluid forced vortex. In addition, the velocity profiles (angular and radial) and the position trajectory of a particle in a fluid forced vortex are described in the current study.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China.
文摘Flight dynamics modeling for the Mars helicopter faces great challenges.Aerodynamic modeling of coaxial rotor with high confidence and high computational efficiency is a major difficulty for the field.This paper builds an aerodynamic model of coaxial rotor in the extremely thin Martian atmosphere using the viscous vortex particle method.The aerodynamic forces and flow characteristics of rigid coaxial rotor are computed and analyzed.Meanwhile,a high fidelity aerodynamic surrogate model is built to improve the computational efficiency of the flight dynamics model.Results in this paper reveal that rigid coaxial rotor can bring the Mars helicopter sufficient controllability but result in obvious instability and control couplings in forward flight.This highlights the great differences in flight dynamics characteristics compared with conventional helicopters on Earth.