We theoretically investigate the effects of different electronic states as the initial state on the vortex patterns in photoelectron momentum distributions(PMDs)from numerical solutions of the two-dimensional(2D)time-...We theoretically investigate the effects of different electronic states as the initial state on the vortex patterns in photoelectron momentum distributions(PMDs)from numerical solutions of the two-dimensional(2D)time-dependent Schrodinger equation(TDSE)of He^(+)with a pair of counter-rotating circularly polarized attosecond pulses.It is found that the number of spiral arms in vortex patterns is equal to the number of the absorbed photons when the initial state is the ground state.However,the number of spiral arms in vortex patterns is always two more than the number of the absorbed photons when the initial state is the excited state.This sensitivity is attributed to the initial electron density distribution.In addition,we have demonstrated the PMDs for different initial electronic states with the same wavelengths and analyzed their corresponding physical mechanisms.It is illustrated that the method presented can be employed to effectively control the distribution of the electron vortices.展开更多
A numerical study is presented on roll damping of ships by solving Navier-Stokes equation. Two Dimensional unsteady incompressible viscous flow around the rolling cylinders of various ship-like cross sections are nume...A numerical study is presented on roll damping of ships by solving Navier-Stokes equation. Two Dimensional unsteady incompressible viscous flow around the rolling cylinders of various ship-like cross sections are numerically simulated by use of the computational scheme previously developed by the authors. The numerical results show that the location of the vortices is very similar to the existing experimental result. For comparison of vortex patterns and roll damping on various ship-like cross sections, various distributions of shear stress and pressure on the rolling ship hull surface are presented in this paper. It is found that there are two vortices around the midship-like section and there is one vortex around the fore or stern section. Based on these simulation results, the roll damping of a ship including viscous effects is calculated. The contribution of pressure to the roll moment is larger than the contribution of frictional shear stress.展开更多
Vortex patterns of dust particles have been observed in a magnetized dusty plasma system. The formation mechanism of two-dimensional (2D) vortex patterns has been investigated by analysing the forces acting on dust ...Vortex patterns of dust particles have been observed in a magnetized dusty plasma system. The formation mechanism of two-dimensional (2D) vortex patterns has been investigated by analysing the forces acting on dust particles and molecular dynamics (MD) simulations in a 2D confined magnetized dusty plasma. It has been found that with a weak confining electric field and a strong magnetic field, the particles' trajectories will form a vortex shape. The simulation results agree with our experimental observations. In our experiments, vortex patterns can be induced via circular rotation of particles by changing the rf (radio-frequency) power in a magnetized dusty plasma.展开更多
The flow past a circular-section cylinder with a conic shroud perforated with four holes at the peak was simulated numerically at Re = 100, considering two factors, viz.the angle of attack and the diameter of the hole...The flow past a circular-section cylinder with a conic shroud perforated with four holes at the peak was simulated numerically at Re = 100, considering two factors, viz.the angle of attack and the diameter of the holes. The effects of the perforated conic shroud on the vortex shedding pattern in the near wake was mainly investigated, as well as the time history of the drag and lift forces. In the investigated parameter space, three flow regimes were generally identified, corresponding to weak, moderate, and strong disturbance effects.In regime I, the wake can mainly be described by alternately shedding Kármán or Kármán-like vortices. In regime II, the spanwise vortices are obviously disturbed along the span due to the appearance of additional vorticity components and their interactions with the spanwise vortices, but still shed in synchronization along the spanwise direction. In regime III,the typical Kármán vortices partially or totally disappear,and some new vortex shedding patterns appear, such as-type, obliquely shedding, and crossed spanwise vortices with opposite sign. Corresponding to these complex vortex shedding patterns in the near wake, the fluid forces no longer oscillate regularly at a single vortex shedding frequency, but rather with a lower modulation frequency and multiple amplitudes. An overview of these flow regimes is presented.展开更多
By means of ink trace visualization of the flows in conventional straight, positively curved and negatively curved cascades with tip clearance, and measurement of the aerodynamic parameters in transverse section, and...By means of ink trace visualization of the flows in conventional straight, positively curved and negatively curved cascades with tip clearance, and measurement of the aerodynamic parameters in transverse section, and by appling topology theory, the topological structures and vortex structure in the transverse section of a blade cascade were analyzed. Compared with conventional straight cascade, blade positive curving eliminates the separation line of the upper passage vortex, and leads the secondary vortex to change from close separation to open separation, while blade negative curving effects merely the positions of singular points and the intensities and scales of vortex.展开更多
The wind tunnel experiments is conducted to get inspiration for understanding the mechanism of the asymmetric flow pattern and developing an innovative flow control technique for a slender body at high angle of attack...The wind tunnel experiments is conducted to get inspiration for understanding the mechanism of the asymmetric flow pattern and developing an innovative flow control technique for a slender body at high angle of attack. The bi-stable situation of the side forces is observed, which could be easily switched by a tiny disturbances either from coming flow or from artificial disturbances at nose tip (including manufacturing defect). In turbulent flows the side forces switched randomly between positive and negative. There exists a hysteresis loop of side force with the rolling angle. A rod in front of the slender body is used to change the vortex pattern, which could be kept even the rod is moved out from the stream. A miniature strake attached to the nose tip of the model can be moved to different circumferential position. When the strake is stationary, the hysteresis loop disappears and the side force does not change with the turbulent fluctuation of coming flow. The results from dynamic measurements of section side force indicates that when the strake swung at lower frequency the side force can follow the cadence of the swinging strake. With increasing frequency, the magnitude of the side force decreases. At still high frequency, the side force diminishes to zero. If the strake is swinging, while the middle position can be changed to different circumferential angle Фs on either left or right side, the side forces can be changed proportionally with the angle Фs. On the basis of the experimental results, the mechanism of the asymmetry is discussed.展开更多
Force measurements of oscillatory flow acting on a single circular cylinder have been carried out. The experiments were done by oscillating a circular cylinder in still water. Instantaneous forces and velocity fields ...Force measurements of oscillatory flow acting on a single circular cylinder have been carried out. The experiments were done by oscillating a circular cylinder in still water. Instantaneous forces and velocity fields around the cylinder were measured by Particle Image Velocimetry (PIV). The Keulegan-Carpenter number (KC) varied in the range from 5 to 20 and the viscous parameter beta = Re / KC was set at 500 (Re is Reynolds number). It was found that the strength and frequency of the lift force increased with KC number, the main frequency of the lift force being three times the frequency of the oscillatory flow at KC = 20. The movement and strength of the vortices around the cylinder are discussed for different KC numbers.展开更多
A hybrid finite difference method and vortex method (HDV), which is based on domain decomposition and proposed by the authors (1992), is improved by using a modified incomplete LU decomposition conjugate gradient meth...A hybrid finite difference method and vortex method (HDV), which is based on domain decomposition and proposed by the authors (1992), is improved by using a modified incomplete LU decomposition conjugate gradient method (MILU-CG), and a high order implicit difference algorithm. The flow around a rotating circular cylinder at Reynolds number R-e = 1000, 200 and the angular to rectilinear speed ratio alpha is an element of (0.5, 3.25) is studied numerically. The long-time full developed features about the variations of the vortex patterns in the wake, and drag, lift forces on the cylinder are given. The calculated streamline contours agreed well with the experimental visualized flow pictures. The existence of critical states and the vortex patterns at the states are given for the first time. The maximum lift to drag force ratio can be obtained nearby the critical states.展开更多
In the present paper,two-and three-dimensional numerical simulations of the flow interference between four cylinders in an in-line square arrangement at Re = 200 are performed.Assisted with the two-dimensional(2-D) nu...In the present paper,two-and three-dimensional numerical simulations of the flow interference between four cylinders in an in-line square arrangement at Re = 200 are performed.Assisted with the two-dimensional(2-D) numerical simulation,the mean and fluctuating forces,Strouhal number(St) and vortex shedding pattern in the wake for each cylinder were analyzed with the spacing ratio(L /D) ranging from 1.5 to 6.0.It was found that,four different vortex modes(viz.,flip-flopping,shielding anti-phase-synchronized,in-phasesynchronized and anti-phase-synchronized) gradually appear with the increase of the L/D ratio.The average drag coefficient of the upstream cylinders is larger than that of the downstream cylinders,while the downstream cylinders usually undergo serious fluctuating forces.When the L/D ratio ranges from 3.0 to 4.0,the dominant frequency of the drag coefficient is equal to the value of St of upstream cylinders.This indicates that a simultaneous resonance in the in-flow and cross-flow directions may occur for some single structures of a multi-body oscillating system.For the 3-D numerical simulation,the L/D and aspect ratios are kept constant as 5.0 and 10,respectively.It was found that some vortices are formed in the wake of the upstream cylinders.Besides,with the same spacing ratio,the calculated drag coefficient and lift coefficient fluctuation are slightly larger than the 2-D results,but with a phase difference.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.12074142)the Natural Science Foundation of Jilin Province of China(Grant No.20180101225JC)the Graduate Innovation Fund of Jilin University,China(Grant No.101832020CX337)。
文摘We theoretically investigate the effects of different electronic states as the initial state on the vortex patterns in photoelectron momentum distributions(PMDs)from numerical solutions of the two-dimensional(2D)time-dependent Schrodinger equation(TDSE)of He^(+)with a pair of counter-rotating circularly polarized attosecond pulses.It is found that the number of spiral arms in vortex patterns is equal to the number of the absorbed photons when the initial state is the ground state.However,the number of spiral arms in vortex patterns is always two more than the number of the absorbed photons when the initial state is the excited state.This sensitivity is attributed to the initial electron density distribution.In addition,we have demonstrated the PMDs for different initial electronic states with the same wavelengths and analyzed their corresponding physical mechanisms.It is illustrated that the method presented can be employed to effectively control the distribution of the electron vortices.
文摘A numerical study is presented on roll damping of ships by solving Navier-Stokes equation. Two Dimensional unsteady incompressible viscous flow around the rolling cylinders of various ship-like cross sections are numerically simulated by use of the computational scheme previously developed by the authors. The numerical results show that the location of the vortices is very similar to the existing experimental result. For comparison of vortex patterns and roll damping on various ship-like cross sections, various distributions of shear stress and pressure on the rolling ship hull surface are presented in this paper. It is found that there are two vortices around the midship-like section and there is one vortex around the fore or stern section. Based on these simulation results, the roll damping of a ship including viscous effects is calculated. The contribution of pressure to the roll moment is larger than the contribution of frictional shear stress.
基金'the Research Start-Up Fund of China Agricultural University(No.2005057)
文摘Vortex patterns of dust particles have been observed in a magnetized dusty plasma system. The formation mechanism of two-dimensional (2D) vortex patterns has been investigated by analysing the forces acting on dust particles and molecular dynamics (MD) simulations in a 2D confined magnetized dusty plasma. It has been found that with a weak confining electric field and a strong magnetic field, the particles' trajectories will form a vortex shape. The simulation results agree with our experimental observations. In our experiments, vortex patterns can be induced via circular rotation of particles by changing the rf (radio-frequency) power in a magnetized dusty plasma.
基金supported by the National Key Scientific Instrument and Equipment Development Program of China (Grant 2011YQ120048)
文摘The flow past a circular-section cylinder with a conic shroud perforated with four holes at the peak was simulated numerically at Re = 100, considering two factors, viz.the angle of attack and the diameter of the holes. The effects of the perforated conic shroud on the vortex shedding pattern in the near wake was mainly investigated, as well as the time history of the drag and lift forces. In the investigated parameter space, three flow regimes were generally identified, corresponding to weak, moderate, and strong disturbance effects.In regime I, the wake can mainly be described by alternately shedding Kármán or Kármán-like vortices. In regime II, the spanwise vortices are obviously disturbed along the span due to the appearance of additional vorticity components and their interactions with the spanwise vortices, but still shed in synchronization along the spanwise direction. In regime III,the typical Kármán vortices partially or totally disappear,and some new vortex shedding patterns appear, such as-type, obliquely shedding, and crossed spanwise vortices with opposite sign. Corresponding to these complex vortex shedding patterns in the near wake, the fluid forces no longer oscillate regularly at a single vortex shedding frequency, but rather with a lower modulation frequency and multiple amplitudes. An overview of these flow regimes is presented.
文摘By means of ink trace visualization of the flows in conventional straight, positively curved and negatively curved cascades with tip clearance, and measurement of the aerodynamic parameters in transverse section, and by appling topology theory, the topological structures and vortex structure in the transverse section of a blade cascade were analyzed. Compared with conventional straight cascade, blade positive curving eliminates the separation line of the upper passage vortex, and leads the secondary vortex to change from close separation to open separation, while blade negative curving effects merely the positions of singular points and the intensities and scales of vortex.
文摘The wind tunnel experiments is conducted to get inspiration for understanding the mechanism of the asymmetric flow pattern and developing an innovative flow control technique for a slender body at high angle of attack. The bi-stable situation of the side forces is observed, which could be easily switched by a tiny disturbances either from coming flow or from artificial disturbances at nose tip (including manufacturing defect). In turbulent flows the side forces switched randomly between positive and negative. There exists a hysteresis loop of side force with the rolling angle. A rod in front of the slender body is used to change the vortex pattern, which could be kept even the rod is moved out from the stream. A miniature strake attached to the nose tip of the model can be moved to different circumferential position. When the strake is stationary, the hysteresis loop disappears and the side force does not change with the turbulent fluctuation of coming flow. The results from dynamic measurements of section side force indicates that when the strake swung at lower frequency the side force can follow the cadence of the swinging strake. With increasing frequency, the magnitude of the side force decreases. At still high frequency, the side force diminishes to zero. If the strake is swinging, while the middle position can be changed to different circumferential angle Фs on either left or right side, the side forces can be changed proportionally with the angle Фs. On the basis of the experimental results, the mechanism of the asymmetry is discussed.
基金National Science Foundation of China and British Council
文摘Force measurements of oscillatory flow acting on a single circular cylinder have been carried out. The experiments were done by oscillating a circular cylinder in still water. Instantaneous forces and velocity fields around the cylinder were measured by Particle Image Velocimetry (PIV). The Keulegan-Carpenter number (KC) varied in the range from 5 to 20 and the viscous parameter beta = Re / KC was set at 500 (Re is Reynolds number). It was found that the strength and frequency of the lift force increased with KC number, the main frequency of the lift force being three times the frequency of the oscillatory flow at KC = 20. The movement and strength of the vortices around the cylinder are discussed for different KC numbers.
文摘A hybrid finite difference method and vortex method (HDV), which is based on domain decomposition and proposed by the authors (1992), is improved by using a modified incomplete LU decomposition conjugate gradient method (MILU-CG), and a high order implicit difference algorithm. The flow around a rotating circular cylinder at Reynolds number R-e = 1000, 200 and the angular to rectilinear speed ratio alpha is an element of (0.5, 3.25) is studied numerically. The long-time full developed features about the variations of the vortex patterns in the wake, and drag, lift forces on the cylinder are given. The calculated streamline contours agreed well with the experimental visualized flow pictures. The existence of critical states and the vortex patterns at the states are given for the first time. The maximum lift to drag force ratio can be obtained nearby the critical states.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50538020)
文摘In the present paper,two-and three-dimensional numerical simulations of the flow interference between four cylinders in an in-line square arrangement at Re = 200 are performed.Assisted with the two-dimensional(2-D) numerical simulation,the mean and fluctuating forces,Strouhal number(St) and vortex shedding pattern in the wake for each cylinder were analyzed with the spacing ratio(L /D) ranging from 1.5 to 6.0.It was found that,four different vortex modes(viz.,flip-flopping,shielding anti-phase-synchronized,in-phasesynchronized and anti-phase-synchronized) gradually appear with the increase of the L/D ratio.The average drag coefficient of the upstream cylinders is larger than that of the downstream cylinders,while the downstream cylinders usually undergo serious fluctuating forces.When the L/D ratio ranges from 3.0 to 4.0,the dominant frequency of the drag coefficient is equal to the value of St of upstream cylinders.This indicates that a simultaneous resonance in the in-flow and cross-flow directions may occur for some single structures of a multi-body oscillating system.For the 3-D numerical simulation,the L/D and aspect ratios are kept constant as 5.0 and 10,respectively.It was found that some vortices are formed in the wake of the upstream cylinders.Besides,with the same spacing ratio,the calculated drag coefficient and lift coefficient fluctuation are slightly larger than the 2-D results,but with a phase difference.