Draft tube vortex rope is considered a special cavitation flow phenomenon in tubular turbine units.Cavitation vortex rope is one of the most detrimental factors affecting the safety of hydraulic turbines.In this study...Draft tube vortex rope is considered a special cavitation flow phenomenon in tubular turbine units.Cavitation vortex rope is one of the most detrimental factors affecting the safety of hydraulic turbines.In this study,ANSYS CFX software was utilized to numerically simulate the internal cavitation flow of a hydraulic turbine draft tube.The evolution of the cavitation vortex core was characterized by vortex line distribution and vorticity transport equation.The shape and number of blades influenced the revolving direction and distribution characteristics of the vortex close to the runner cone,which formed a counterclockwise-clockwise-counterclockwise distribution pattern.Simultaneously,there were many secondary flows in the draft tube.Mutual cancellation and dissipation between the flows was one of the reasons for reduction in vorticity.When the cross-sectional shape of the draft tube was changed,the vorticity was distributed from the center of the vortex rope to all parts of the cross-sectional draft tube,with extreme values at the center and at the walls.The vortex stretching and dilatation terms played a major role in the change in vorticity,with the baroclinic torque having an effect at the center of the vortex rope,this study is helpful to understand the flow of water in the draft tube and guide the design and optimization of the draft tube in engineering application.展开更多
The three-dimensional unsteady turbulent flow is studied numerically in the whole flow passage of hydraulic turbine, and vortex flow in the draft tube is predicted accurately in this paper. The numerical prediction is...The three-dimensional unsteady turbulent flow is studied numerically in the whole flow passage of hydraulic turbine, and vortex flow in the draft tube is predicted accurately in this paper. The numerical prediction is based on the Navier-Stokes equations and Large-Eddy Simulation (LES) model. The SIMPLE algorithm with the body fitted coordinate and tetrahedroid grid system is applied for the solution of the discretization governing equations.展开更多
The Lattice Boltzmann method (LBM) is used to simulate the flow field in a bifurcate channel which is a simplified model of the draft tube of hydraulic turbine machine. According to the simulation results, some qual...The Lattice Boltzmann method (LBM) is used to simulate the flow field in a bifurcate channel which is a simplified model of the draft tube of hydraulic turbine machine. According to the simulation results, some qualitative conclusions can be deduced. The reason of uneven flux in different branches of draft tube is given. Not only the vortex rope itself, but also the attenuation of the rotation strength is important in bringing on the uneven flux. The later leads to adverse pressure gradient, and changes the velocity profile. If the outlet contains more than one exit, the one that contains the vortex rope will lose flux because of this adverse pressure gradient. Several possible methods can be used to minimize the adverse pressure gradient domain in order to improve the efficiency of turbine machine.展开更多
Numerical simulations of the flow in the draft tube of a Francis turbine are carried out in order to elucidate the effects of tangential velocity on flow stability.Influence of the location of the maximum tangential v...Numerical simulations of the flow in the draft tube of a Francis turbine are carried out in order to elucidate the effects of tangential velocity on flow stability.Influence of the location of the maximum tangential velocity is explored considering the equality of the total energy at the inlet of the draft tube.It is found that the amplitude of the pressure fluctuation decreases when the location of the maximum of the tangential velocity moves from the centre to the wall on the cross section.Thus,the stability of the flow in the draft tube increases with the moving of the location of the maximum tangential velocity.However,the relative hydraulic loss increases and the recovery coefficient of the draft tube decreases slightly.展开更多
基金the National Natural Science Foundation,China(Grant No.52079118)Key Research and Development Plan of Sichuan Provincial Department of Science and Technology(Grant No.2023YFQ0021)+1 种基金Qinghai Province“Kunlun Talents High-end Innovation and Entrepreneurship Talent Program”Qinghai University of Science and Technology talent introduction of scientific research special grants,Central leading local(scientific and technological innovation base construction)project XZ202201YD0017CJiangsu South-North Water Diversion Science and Technology R&D Project(Grant No.JSNSBD202303).
文摘Draft tube vortex rope is considered a special cavitation flow phenomenon in tubular turbine units.Cavitation vortex rope is one of the most detrimental factors affecting the safety of hydraulic turbines.In this study,ANSYS CFX software was utilized to numerically simulate the internal cavitation flow of a hydraulic turbine draft tube.The evolution of the cavitation vortex core was characterized by vortex line distribution and vorticity transport equation.The shape and number of blades influenced the revolving direction and distribution characteristics of the vortex close to the runner cone,which formed a counterclockwise-clockwise-counterclockwise distribution pattern.Simultaneously,there were many secondary flows in the draft tube.Mutual cancellation and dissipation between the flows was one of the reasons for reduction in vorticity.When the cross-sectional shape of the draft tube was changed,the vorticity was distributed from the center of the vortex rope to all parts of the cross-sectional draft tube,with extreme values at the center and at the walls.The vortex stretching and dilatation terms played a major role in the change in vorticity,with the baroclinic torque having an effect at the center of the vortex rope,this study is helpful to understand the flow of water in the draft tube and guide the design and optimization of the draft tube in engineering application.
基金Project supported by the National Natural Science Foundation of China (Grant No :50179021) and the Youth Scienceand Technology Foundation of Sichuan (Grant No :05ZQ026-07) .
文摘The three-dimensional unsteady turbulent flow is studied numerically in the whole flow passage of hydraulic turbine, and vortex flow in the draft tube is predicted accurately in this paper. The numerical prediction is based on the Navier-Stokes equations and Large-Eddy Simulation (LES) model. The SIMPLE algorithm with the body fitted coordinate and tetrahedroid grid system is applied for the solution of the discretization governing equations.
基金supported by the Key Project of National Natural Science Foundation of China (10532010)
文摘The Lattice Boltzmann method (LBM) is used to simulate the flow field in a bifurcate channel which is a simplified model of the draft tube of hydraulic turbine machine. According to the simulation results, some qualitative conclusions can be deduced. The reason of uneven flux in different branches of draft tube is given. Not only the vortex rope itself, but also the attenuation of the rotation strength is important in bringing on the uneven flux. The later leads to adverse pressure gradient, and changes the velocity profile. If the outlet contains more than one exit, the one that contains the vortex rope will lose flux because of this adverse pressure gradient. Several possible methods can be used to minimize the adverse pressure gradient domain in order to improve the efficiency of turbine machine.
基金supported by the open fund of State Key Laboratory of Hydroscience and Engineer of Tsinghua University(No.sklhse-2013-E-02)the Special Major Project of Science and Technology of Zhejiang province(No.2013C 01139)
文摘Numerical simulations of the flow in the draft tube of a Francis turbine are carried out in order to elucidate the effects of tangential velocity on flow stability.Influence of the location of the maximum tangential velocity is explored considering the equality of the total energy at the inlet of the draft tube.It is found that the amplitude of the pressure fluctuation decreases when the location of the maximum of the tangential velocity moves from the centre to the wall on the cross section.Thus,the stability of the flow in the draft tube increases with the moving of the location of the maximum tangential velocity.However,the relative hydraulic loss increases and the recovery coefficient of the draft tube decreases slightly.