The Sonid Zuoqi ductile detachment zone is located at the southeastern margin of the Central Asian orogenic belt(CAOB),striking EW and dipping to the S.The major rock type of the Sonid Zuoqi ductile detachment zone is...The Sonid Zuoqi ductile detachment zone is located at the southeastern margin of the Central Asian orogenic belt(CAOB),striking EW and dipping to the S.The major rock type of the Sonid Zuoqi ductile detachment zone is mylonite derived from granite.The sequence of mylonite features is:(1)S and C foliations of mylonite,and(2)extensional crenulation cleavage(ecc)or C′and the kinematic vorticity(Wk)value changed from 0.70 to 0.95 and from 0.37 to 0.69,respectively;the strain type of the mylonites within the Sonid Zuoqi ductile detachment zone is compressional to planar strain.The strong deformation mylonite and Halatu plutons yielded a zircon U-Pb age of 244 Ma and a zircon(U-Th)/He age of 214 Ma,respectively.Based on the strain and kinematic vorticity analysis,together with the zircon U-Pb and zircon(U-Th)/He ages and the regional tectonic background,the study area experienced three stage evolution:tangential simpleshear(244 Ma),simple-shear-dominated general shear represented by upper crustal extension(224 Ma)and pure-shear-dominated general shear represented by the Halatu pluton doming(214 Ma),which constrained the early Mesozoic NE-SW crustal extension at the southeastern margin of the CAOB.This NE-SW extension probably originated from the postorogenic extensional collapse of the CAOB,subsequent exhumation being controlled by the far afield effects of the closure of the Mongol-Okhotsk belt.展开更多
Boundary conditions for momentum and vorticity have been precisely derived, paying attention to the physical meaning of each mathematical expression of terms rigorously obtained from the basic equations: Navier-Stokes...Boundary conditions for momentum and vorticity have been precisely derived, paying attention to the physical meaning of each mathematical expression of terms rigorously obtained from the basic equations: Navier-Stokes equation and the equation of vorticity transport. It has been shown first that a contribution of fluid molecules crossing over a conceptual surface moving with fluid velocity due to their fluctuating motion is essentially important to understanding transport phenomena of momentum and vorticity. A notion of surface layers, which are thin layers at both sides of an interface, has been introduced next to elucidate the transporting mechanism of momentum and vorticity from one phase to the other at an interface through which no fluid molecules are crossing over. A fact that a size of δV, in which reliable values of density, momentum, and velocity of fluid are respectively defined as a volume-averaged mass of fluid molecules, a volume-averaged momentum of fluid molecules and a mass-averaged velocity of fluid molecules, is not infinitesimal but finite has been one of the key factors leading to the boundary conditions for vorticity at an interface between two fluids. The most distinguished characteristics of the boundary conditions derived here are the zero-value conditions for a normal component of momentum flux and tangential components of vorticity flux, at an interface.展开更多
From 17 November to 27 December 2022, extremely cold snowstorms frequently swept across North America and Eurasia. Diagnostic analysis reveals that these extreme cold events were closely related to the establishment o...From 17 November to 27 December 2022, extremely cold snowstorms frequently swept across North America and Eurasia. Diagnostic analysis reveals that these extreme cold events were closely related to the establishment of blocking circulations. Alaska Blocking(AB) and subsequent Ural Blocking(UB) episodes are linked to the phase transition of the North Atlantic Oscillation(NAO) and represent the main atmospheric regimes in the Northern Hemisphere. The downstream dispersion and propagation of Rossby wave packets from Alaska to East Asia provide a large-scale connection between AB and UB episodes. Based on the nonlinear multi-scale interaction(NMI) model, we found that the meridional potential vorticity gradient(PVy) in November and December of 2022 was anomalously weak in the mid-high latitudes from North America to Eurasia and provided a favorable background for the prolonged maintenance of UB and AB events and the generation of associated severe extreme snowstorms. However, the difference in the UB in terms of its persistence,location, and strength between November and December is related to the positive(negative) NAO in November(December). During the La Ni?a winter of 2022, the UB and AB events are related to the downward propagation of stratospheric anomalies, in addition to contributions by La Ni?a and low Arctic sea ice concentrations as they pertain to reducing PVyin mid-latitudes.展开更多
In this paper we investigate the traveling wave solution of the two dimensional Euler equations with gravity at the free surface over a flat bed.We assume that the free surface is almost periodic in the horizontal dir...In this paper we investigate the traveling wave solution of the two dimensional Euler equations with gravity at the free surface over a flat bed.We assume that the free surface is almost periodic in the horizontal direction.Using conformal mappings,one can change the free boundary problem into a fixed boundary problem for some unknown functions with the boundary condition.By virtue of the Hilbert transform,the problem is equivalent to a quasilinear pseudodifferential equation for an almost periodic function of one variable.The bifurcation theory ensures that we can obtain an existence result.Our existence result generalizes and covers the recent result in[15].Moreover,our result implies a non-uniqueness result at the same bifurcation point.展开更多
Meteorologists are experiencing many challenges in the reliable forecasting of the track and intensity of tropical cyclones(TC).Uses of the potential vorticity(PV)technique will enrich the current forecasting system.T...Meteorologists are experiencing many challenges in the reliable forecasting of the track and intensity of tropical cyclones(TC).Uses of the potential vorticity(PV)technique will enrich the current forecasting system.The use of PV analysis of TC intensification over the North Indian Ocean(NIO)is rare.In this study,the authors analyze the behaviour of upper-level PV with dynamic parameters of TCs over NIO.The authors used NCEP FNL reanalysis 1×1 degree data as input in WRF model version 4.0.3 with one-way nesting between the parent and child domains.The authors used a coupling of the Kain-Fritsch(new Eta)scheme and the WSM 6-class graupel scheme as cumulus and microphysics options to run the model.The authors found that at least one potential vorticity unit(PVU)(1 PVU=10^(-6) m^(2)s^(-1)KKg^(-1))upper PV is required to maintain the intensification of TC.Larger upper PV accelerates the fall of central pressure.The high value of upper PV yields the intensification of TC.The wind shear and upper PV exhibited almost identical temporal evolution.Upper PV cannot intensify the TCs at negative wind shear and shear above the threshold value of 12 ms^(-1).The upper PV and geopotential heights of 500 hPa change mutually in opposite trends.The upper PV calculated by the model is comparable to that of ECMWF results.Therefore,the findings of this study are admissible.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.41662014)。
文摘The Sonid Zuoqi ductile detachment zone is located at the southeastern margin of the Central Asian orogenic belt(CAOB),striking EW and dipping to the S.The major rock type of the Sonid Zuoqi ductile detachment zone is mylonite derived from granite.The sequence of mylonite features is:(1)S and C foliations of mylonite,and(2)extensional crenulation cleavage(ecc)or C′and the kinematic vorticity(Wk)value changed from 0.70 to 0.95 and from 0.37 to 0.69,respectively;the strain type of the mylonites within the Sonid Zuoqi ductile detachment zone is compressional to planar strain.The strong deformation mylonite and Halatu plutons yielded a zircon U-Pb age of 244 Ma and a zircon(U-Th)/He age of 214 Ma,respectively.Based on the strain and kinematic vorticity analysis,together with the zircon U-Pb and zircon(U-Th)/He ages and the regional tectonic background,the study area experienced three stage evolution:tangential simpleshear(244 Ma),simple-shear-dominated general shear represented by upper crustal extension(224 Ma)and pure-shear-dominated general shear represented by the Halatu pluton doming(214 Ma),which constrained the early Mesozoic NE-SW crustal extension at the southeastern margin of the CAOB.This NE-SW extension probably originated from the postorogenic extensional collapse of the CAOB,subsequent exhumation being controlled by the far afield effects of the closure of the Mongol-Okhotsk belt.
文摘Boundary conditions for momentum and vorticity have been precisely derived, paying attention to the physical meaning of each mathematical expression of terms rigorously obtained from the basic equations: Navier-Stokes equation and the equation of vorticity transport. It has been shown first that a contribution of fluid molecules crossing over a conceptual surface moving with fluid velocity due to their fluctuating motion is essentially important to understanding transport phenomena of momentum and vorticity. A notion of surface layers, which are thin layers at both sides of an interface, has been introduced next to elucidate the transporting mechanism of momentum and vorticity from one phase to the other at an interface through which no fluid molecules are crossing over. A fact that a size of δV, in which reliable values of density, momentum, and velocity of fluid are respectively defined as a volume-averaged mass of fluid molecules, a volume-averaged momentum of fluid molecules and a mass-averaged velocity of fluid molecules, is not infinitesimal but finite has been one of the key factors leading to the boundary conditions for vorticity at an interface between two fluids. The most distinguished characteristics of the boundary conditions derived here are the zero-value conditions for a normal component of momentum flux and tangential components of vorticity flux, at an interface.
基金support from the National Natural Science Foundation of China (Grant Nos. 41975068, 42150204, 42288101, 42075024, and 41830969)。
文摘From 17 November to 27 December 2022, extremely cold snowstorms frequently swept across North America and Eurasia. Diagnostic analysis reveals that these extreme cold events were closely related to the establishment of blocking circulations. Alaska Blocking(AB) and subsequent Ural Blocking(UB) episodes are linked to the phase transition of the North Atlantic Oscillation(NAO) and represent the main atmospheric regimes in the Northern Hemisphere. The downstream dispersion and propagation of Rossby wave packets from Alaska to East Asia provide a large-scale connection between AB and UB episodes. Based on the nonlinear multi-scale interaction(NMI) model, we found that the meridional potential vorticity gradient(PVy) in November and December of 2022 was anomalously weak in the mid-high latitudes from North America to Eurasia and provided a favorable background for the prolonged maintenance of UB and AB events and the generation of associated severe extreme snowstorms. However, the difference in the UB in terms of its persistence,location, and strength between November and December is related to the positive(negative) NAO in November(December). During the La Ni?a winter of 2022, the UB and AB events are related to the downward propagation of stratospheric anomalies, in addition to contributions by La Ni?a and low Arctic sea ice concentrations as they pertain to reducing PVyin mid-latitudes.
基金partially the National Key R&D Program of China(2021YFA1002100)the NSFC(12171493,11701586)+2 种基金the FDCT(0091/2018/A3)the Guangdong Special Support Program(8-2015)the Key Project of NSF of Guangdong Province(2021A1515010296)。
文摘In this paper we investigate the traveling wave solution of the two dimensional Euler equations with gravity at the free surface over a flat bed.We assume that the free surface is almost periodic in the horizontal direction.Using conformal mappings,one can change the free boundary problem into a fixed boundary problem for some unknown functions with the boundary condition.By virtue of the Hilbert transform,the problem is equivalent to a quasilinear pseudodifferential equation for an almost periodic function of one variable.The bifurcation theory ensures that we can obtain an existence result.Our existence result generalizes and covers the recent result in[15].Moreover,our result implies a non-uniqueness result at the same bifurcation point.
基金The authors acknowledge the financial support from the University Grants Commission of Bangladesh.We express our deep gratitude to the Bangladesh Meteorological Department for giving us extensive technical assistance.We thank National Centres for Environmental Prediction(NCEP)and European Centre for Medium-Range Weather Forecasts(ECMWF)for providing reanalysis data to us。
文摘Meteorologists are experiencing many challenges in the reliable forecasting of the track and intensity of tropical cyclones(TC).Uses of the potential vorticity(PV)technique will enrich the current forecasting system.The use of PV analysis of TC intensification over the North Indian Ocean(NIO)is rare.In this study,the authors analyze the behaviour of upper-level PV with dynamic parameters of TCs over NIO.The authors used NCEP FNL reanalysis 1×1 degree data as input in WRF model version 4.0.3 with one-way nesting between the parent and child domains.The authors used a coupling of the Kain-Fritsch(new Eta)scheme and the WSM 6-class graupel scheme as cumulus and microphysics options to run the model.The authors found that at least one potential vorticity unit(PVU)(1 PVU=10^(-6) m^(2)s^(-1)KKg^(-1))upper PV is required to maintain the intensification of TC.Larger upper PV accelerates the fall of central pressure.The high value of upper PV yields the intensification of TC.The wind shear and upper PV exhibited almost identical temporal evolution.Upper PV cannot intensify the TCs at negative wind shear and shear above the threshold value of 12 ms^(-1).The upper PV and geopotential heights of 500 hPa change mutually in opposite trends.The upper PV calculated by the model is comparable to that of ECMWF results.Therefore,the findings of this study are admissible.