Traditional clustering algorithms often struggle to produce satisfactory results when dealing with datasets withuneven density. Additionally, they incur substantial computational costs when applied to high-dimensional...Traditional clustering algorithms often struggle to produce satisfactory results when dealing with datasets withuneven density. Additionally, they incur substantial computational costs when applied to high-dimensional datadue to calculating similarity matrices. To alleviate these issues, we employ the KD-Tree to partition the dataset andcompute the K-nearest neighbors (KNN) density for each point, thereby avoiding the computation of similaritymatrices. Moreover, we apply the rules of voting elections, treating each data point as a voter and casting a votefor the point with the highest density among its KNN. By utilizing the vote counts of each point, we develop thestrategy for classifying noise points and potential cluster centers, allowing the algorithm to identify clusters withuneven density and complex shapes. Additionally, we define the concept of “adhesive points” between two clustersto merge adjacent clusters that have similar densities. This process helps us identify the optimal number of clustersautomatically. Experimental results indicate that our algorithm not only improves the efficiency of clustering butalso increases its accuracy.展开更多
Advanced Metering Infrastructure(AMI)is the metering network of the smart grid that enables bidirectional communications between each consumer’s premises and the provider’s control center.The massive amount of data ...Advanced Metering Infrastructure(AMI)is the metering network of the smart grid that enables bidirectional communications between each consumer’s premises and the provider’s control center.The massive amount of data collected supports the real-time decision-making required for diverse applications.The communication infrastructure relies on different network types,including the Internet.This makes the infrastructure vulnerable to various attacks,which could compromise security or have devastating effects.However,traditional machine learning solutions cannot adapt to the increasing complexity and diversity of attacks.The objective of this paper is to develop an Anomaly Detection System(ADS)based on deep learning using the CIC-IDS2017 dataset.However,this dataset is highly imbalanced;thus,a two-step sampling technique:random under-sampling and the Synthetic Minority Oversampling Technique(SMOTE),is proposed to balance the dataset.The proposed system utilizes a multiple hidden layer Auto-encoder(AE)for feature extraction and dimensional reduction.In addition,an ensemble voting based on both Random Forest(RF)and Convolu-tional Neural Network(CNN)is developed to classify the multiclass attack cate-gories.The proposed system is evaluated and compared with six different state-of-the-art machine learning and deep learning algorithms:Random Forest(RF),Light Gradient Boosting Machine(LightGBM),eXtreme Gradient Boosting(XGboost),Convolutional Neural Network(CNN),Long Short-Term Memory(LSTM),and bidirectional LSTM(biLSTM).Experimental results show that the proposed model enhances the detection for each attack class compared with the other machine learning and deep learning models with overall accuracy(98.29%),precision(99%),recall(98%),F_(1) score(98%),and the UNDetection rate(UND)(8%).展开更多
Based on traveling ballot mode,we propose a secure quantum anonymous voting via Greenberger–Horne–Zeilinger(GHZ)states.In this scheme,each legal voter performs unitary operation on corresponding position of particle...Based on traveling ballot mode,we propose a secure quantum anonymous voting via Greenberger–Horne–Zeilinger(GHZ)states.In this scheme,each legal voter performs unitary operation on corresponding position of particle sequence to encode his/her voting content.The voters have multiple ballot items to choose rather than just binary options“yes”or“no”.After counting votes phase,any participant who is interested in voting results can obtain the voting results.To improve the efficiency of the traveling quantum anonymous voting scheme,an optimization method based on grouping strategy is also presented.Compared with the most existing traveling quantum voting schemes,the proposed scheme is more practical because of its privacy,verifiability and non-repeatability.Furthermore,the security analysis shows that the proposed traveling quantum anonymous voting scheme can prevent various attacks and ensure high security.展开更多
Influence Maximization(IM)aims to select a seed set of size k in a social network so that information can be spread most widely under a specific information propagation model through this set of nodes.However,most exi...Influence Maximization(IM)aims to select a seed set of size k in a social network so that information can be spread most widely under a specific information propagation model through this set of nodes.However,most existing studies on the IM problem focus on static social network features,while neglecting the features of temporal social networks.To bridge this gap,we focus on node features reflected by their historical interaction behavior in temporal social networks,i.e.,interaction attributes and self-similarity,and incorporate them into the influence maximization algorithm and information propagation model.Firstly,we propose a node feature-aware voting algorithm,called ISVoteRank,for seed nodes selection.Specifically,before voting,the algorithm sets the initial voting ability of nodes in a personalized manner by combining their features.During the voting process,voting weights are set based on the interaction strength between nodes,allowing nodes to vote at different extents and subsequently weakening their voting ability accordingly.The process concludes by selecting the top k nodes with the highest voting scores as seeds,avoiding the inefficiency of iterative seed selection in traditional voting-based algorithms.Secondly,we extend the Independent Cascade(IC)model and propose the Dynamic Independent Cascade(DIC)model,which aims to capture the dynamic features in the information propagation process by combining node features.Finally,experiments demonstrate that the ISVoteRank algorithm has been improved in both effectiveness and efficiency compared to baseline methods,and the influence spread through the DIC model is improved compared to the IC model.展开更多
Managing physical objects in the network’s periphery is made possible by the Internet of Things(IoT),revolutionizing human life.Open attacks and unauthorized access are possible with these IoT devices,which exchange ...Managing physical objects in the network’s periphery is made possible by the Internet of Things(IoT),revolutionizing human life.Open attacks and unauthorized access are possible with these IoT devices,which exchange data to enable remote access.These attacks are often detected using intrusion detection methodologies,although these systems’effectiveness and accuracy are subpar.This paper proposes a new voting classifier composed of an ensemble of machine learning models trained and optimized using metaheuristic optimization.The employed metaheuristic optimizer is a new version of the whale optimization algorithm(WOA),which is guided by the dipper throated optimizer(DTO)to improve the exploration process of the traditionalWOA optimizer.The proposed voting classifier categorizes the network intrusions robustly and efficiently.To assess the proposed approach,a dataset created from IoT devices is employed to record the efficiency of the proposed algorithm for binary attack categorization.The dataset records are balanced using the locality-sensitive hashing(LSH)and Synthetic Minority Oversampling Technique(SMOTE).The evaluation of the achieved results is performed in terms of statistical analysis and visual plots to prove the proposed approach’s effectiveness,stability,and significance.The achieved results confirmed the superiority of the proposed algorithm for the task of network intrusion detection.展开更多
Electronic voting has partially solved the problems of poor anonymity and low efficiency associated with traditional voting.However,the difficulties it introduces into the supervision of the vote counting,as well as i...Electronic voting has partially solved the problems of poor anonymity and low efficiency associated with traditional voting.However,the difficulties it introduces into the supervision of the vote counting,as well as its need for a concurrent guaranteed trusted third party,should not be overlooked.With the advent of blockchain technology in recent years,its features such as decentralization,anonymity,and non-tampering have made it a good candidate in solving the problems that electronic voting faces.In this study,we propose a multi-candidate voting model based on the blockchain technology.With the introduction of an asymmetric encryption and an anonymity-preserving voting algorithm,votes can be counted without relying on a third party,and the voting results can be displayed in real time in a manner that satisfies various levels of voting security and privacy requirements.Experimental results show that the proposed model solves the aforementioned problems of electronic voting without significant negative impact from an increasing number of voters or candidates.展开更多
This paper analyzes the price difference between superior voting (SV) and inferior voting (IV) shares for three dual-class firms: Farmer Mac as a big price discount case, Fox as a price similarity case, and Heico...This paper analyzes the price difference between superior voting (SV) and inferior voting (IV) shares for three dual-class firms: Farmer Mac as a big price discount case, Fox as a price similarity case, and Heico as a big price premium case. We show that the price difference is mainly affected by the control benefit, while voting power and liquidity are also relevant factors. We suggest that the control benefit can be revealed by examining share accumulation and firm performance.展开更多
Phishing is one of the most common social engineering attacks that users over the internet fall for. An example is voting systems, and because such systems should be accurate and error free, phishing prevention techni...Phishing is one of the most common social engineering attacks that users over the internet fall for. An example is voting systems, and because such systems should be accurate and error free, phishing prevention techniques are crucial. Visual Cryptography (VC) is utilized for efficient voting system authentication to cast votes. VC is one of the most secure approaches for privacy protection as it ensures the confidentiality of the voting system. This paper discusses proposed phishing prevention methods and compares different proposed methods.展开更多
To improve the performance of multiple classifier system, a knowledge discovery based dynamic weighted voting (KD-DWV) is proposed based on knowledge discovery. In the method, all base classifiers may be allowed to ...To improve the performance of multiple classifier system, a knowledge discovery based dynamic weighted voting (KD-DWV) is proposed based on knowledge discovery. In the method, all base classifiers may be allowed to operate in different measurement/feature spaces to make the most of diverse classification information. The weights assigned to each output of a base classifier are estimated by the separability of training sample sets in relevant feature space. For this purpose, some decision tables (DTs) are established in terms of the diverse feature sets. And then the uncertainty measures of the separability are induced, in the form of mass functions in Dempster-Shafer theory (DST), from each DTs based on generalized rough set model. From the mass functions, all the weights are calculated by a modified heuristic fusion function and assigned dynamically to each classifier varying with its output. The comparison experiment is performed on the hyperspectral remote sensing images. And the experimental results show that the performance of the classification can be improved by using the proposed method compared with the plurality voting (PV).展开更多
Extreme learning machine(ELM)has been proved to be an effective pattern classification and regression learning mechanism by researchers.However,its good performance is based on a large number of hidden layer nodes.Wit...Extreme learning machine(ELM)has been proved to be an effective pattern classification and regression learning mechanism by researchers.However,its good performance is based on a large number of hidden layer nodes.With the increase of the nodes in the hidden layers,the computation cost is greatly increased.In this paper,we propose a novel algorithm,named constrained voting extreme learning machine(CV-ELM).Compared with the traditional ELM,the CV-ELM determines the input weight and bias based on the differences of between-class samples.At the same time,to improve the accuracy of the proposed method,the voting selection is introduced.The proposed method is evaluated on public benchmark datasets.The experimental results show that the proposed algorithm is superior to the original ELM algorithm.Further,we apply the CV-ELM to the classification of superheat degree(SD)state in the aluminum electrolysis industry,and the recognition accuracy rate reaches87.4%,and the experimental results demonstrate that the proposed method is more robust than the existing state-of-the-art identification methods.展开更多
We investigate the design of anonymous voting protocols,CV-based binary-valued ballot and CV-based multi-valued ballot with continuous variables(CV) in a multi-dimensional quantum cryptosystem to ensure the security...We investigate the design of anonymous voting protocols,CV-based binary-valued ballot and CV-based multi-valued ballot with continuous variables(CV) in a multi-dimensional quantum cryptosystem to ensure the security of voting procedure and data privacy.The quantum entangled states are employed in the continuous variable quantum system to carry the voting information and assist information transmission,which takes the advantage of the GHZ-like states in terms of improving the utilization of quantum states by decreasing the number of required quantum states.It provides a potential approach to achieve the efficient quantum anonymous voting with high transmission security,especially in large-scale votes.展开更多
In this paper, we use the polynomial function and Chaum's RSA (Rivest, Shamir, Adleman) blind signature scheme to construct a secure anonymous internet electronic voting scheme. In our scheme, each vote does not ne...In this paper, we use the polynomial function and Chaum's RSA (Rivest, Shamir, Adleman) blind signature scheme to construct a secure anonymous internet electronic voting scheme. In our scheme, each vote does not need to be revealed in the tallying phase. The ballot number of each candidate gets is counted by computing the degrees of two polynomials' greatest common divisor. Our scheme does not require a special voting channel and communication can occur entirely over the current internet.展开更多
The random forest model is universal and easy to understand, which is often used for classification and prediction. However, it uses non-selective integration and the majority rule to judge the final result, thus the ...The random forest model is universal and easy to understand, which is often used for classification and prediction. However, it uses non-selective integration and the majority rule to judge the final result, thus the difference between the decision trees in the model is ignored and the prediction accuracy of the model is reduced. Taking into consideration these defects, an improved random forest model based on confusion matrix (CM-RF)is proposed. The decision tree cluster is selectively constructed by the similarity measure in the process of constructing the model, and the result is output by using the dynamic weighted voting fusion method in the final voting session. Experiments show that the proposed CM-RF can reduce the impact of low-performance decision trees on the output result, thus improving the accuracy and generalization ability of random forest model.展开更多
The communication complexity of the practical byzantine fault tolerance(PBFT)protocol is reduced with the threshold signature technique applied to the consensus process by phase voting PBFT(PV-PBFT).As most communicat...The communication complexity of the practical byzantine fault tolerance(PBFT)protocol is reduced with the threshold signature technique applied to the consensus process by phase voting PBFT(PV-PBFT).As most communication occurs between the primary node and replica nodes in PV-PVFT,consistency verification is accomplished through threshold signatures,multi-PV,and multiple consensus.The view replacement protocol introduces node weights to influence the election of a primary node,reducing the probability of the same node being elected primary multiple times.The experimental results of consensus algorithms show that compared to PBFT,the communication overhead of PV-PBFT decreases by approximately 90% with nearly one-time improvement in the throughput relative and approximately 2/3 consensus latency,lower than that of the scalable hierarchical byzantine fault tolerance.The communication complexity of the PBFT is O(N^(2)),whereas that of PV-PBFT is only O(N),which implies the significant improvement of the operational efficiency of the blockchain system.展开更多
Oscillatory failure cases(OFC)detection in the fly-by-wire(FBW)flight control system for civil aircraft is addressed in this paper.First,OFC is ranked four levels:Handling quality,static load,global structure fatigue ...Oscillatory failure cases(OFC)detection in the fly-by-wire(FBW)flight control system for civil aircraft is addressed in this paper.First,OFC is ranked four levels:Handling quality,static load,global structure fatigue and local fatigue,according to their respect impact on aircraft.Second,we present voting and comparing monitors based on un-similarity redundancy commands to detect OFC.Third,the associated performances,the thresholds and the counters of the monitors are calculated by the high fidelity nonlinear aircraft models.Finally,the monitors of OFC are verified by the Iron Bird Platform with real parameters of the flight control system.The results show that our approach can detect OFC rapidly.展开更多
基金National Natural Science Foundation of China Nos.61962054 and 62372353.
文摘Traditional clustering algorithms often struggle to produce satisfactory results when dealing with datasets withuneven density. Additionally, they incur substantial computational costs when applied to high-dimensional datadue to calculating similarity matrices. To alleviate these issues, we employ the KD-Tree to partition the dataset andcompute the K-nearest neighbors (KNN) density for each point, thereby avoiding the computation of similaritymatrices. Moreover, we apply the rules of voting elections, treating each data point as a voter and casting a votefor the point with the highest density among its KNN. By utilizing the vote counts of each point, we develop thestrategy for classifying noise points and potential cluster centers, allowing the algorithm to identify clusters withuneven density and complex shapes. Additionally, we define the concept of “adhesive points” between two clustersto merge adjacent clusters that have similar densities. This process helps us identify the optimal number of clustersautomatically. Experimental results indicate that our algorithm not only improves the efficiency of clustering butalso increases its accuracy.
文摘Advanced Metering Infrastructure(AMI)is the metering network of the smart grid that enables bidirectional communications between each consumer’s premises and the provider’s control center.The massive amount of data collected supports the real-time decision-making required for diverse applications.The communication infrastructure relies on different network types,including the Internet.This makes the infrastructure vulnerable to various attacks,which could compromise security or have devastating effects.However,traditional machine learning solutions cannot adapt to the increasing complexity and diversity of attacks.The objective of this paper is to develop an Anomaly Detection System(ADS)based on deep learning using the CIC-IDS2017 dataset.However,this dataset is highly imbalanced;thus,a two-step sampling technique:random under-sampling and the Synthetic Minority Oversampling Technique(SMOTE),is proposed to balance the dataset.The proposed system utilizes a multiple hidden layer Auto-encoder(AE)for feature extraction and dimensional reduction.In addition,an ensemble voting based on both Random Forest(RF)and Convolu-tional Neural Network(CNN)is developed to classify the multiclass attack cate-gories.The proposed system is evaluated and compared with six different state-of-the-art machine learning and deep learning algorithms:Random Forest(RF),Light Gradient Boosting Machine(LightGBM),eXtreme Gradient Boosting(XGboost),Convolutional Neural Network(CNN),Long Short-Term Memory(LSTM),and bidirectional LSTM(biLSTM).Experimental results show that the proposed model enhances the detection for each attack class compared with the other machine learning and deep learning models with overall accuracy(98.29%),precision(99%),recall(98%),F_(1) score(98%),and the UNDetection rate(UND)(8%).
基金supported by the Tang Scholar Project of Soochow Universitythe National Natural Science Foundation of China(Grant No.61873162)+1 种基金the Fund from Jiangsu Engineering Research Center of Novel Optical Fiber Technology and Communication NetworkSuzhou Key Laboratory of Advanced Optical Communication Network Technology。
文摘Based on traveling ballot mode,we propose a secure quantum anonymous voting via Greenberger–Horne–Zeilinger(GHZ)states.In this scheme,each legal voter performs unitary operation on corresponding position of particle sequence to encode his/her voting content.The voters have multiple ballot items to choose rather than just binary options“yes”or“no”.After counting votes phase,any participant who is interested in voting results can obtain the voting results.To improve the efficiency of the traveling quantum anonymous voting scheme,an optimization method based on grouping strategy is also presented.Compared with the most existing traveling quantum voting schemes,the proposed scheme is more practical because of its privacy,verifiability and non-repeatability.Furthermore,the security analysis shows that the proposed traveling quantum anonymous voting scheme can prevent various attacks and ensure high security.
基金supported by the Fundamental Research Funds for the Universities of Heilongjiang(Nos.145109217,135509234)the Youth Science and Technology Innovation Personnel Training Project of Heilongjiang(No.UNPYSCT-2020072)the Innovative Research Projects for Postgraduates of Qiqihar University(No.YJSCX2022048).
文摘Influence Maximization(IM)aims to select a seed set of size k in a social network so that information can be spread most widely under a specific information propagation model through this set of nodes.However,most existing studies on the IM problem focus on static social network features,while neglecting the features of temporal social networks.To bridge this gap,we focus on node features reflected by their historical interaction behavior in temporal social networks,i.e.,interaction attributes and self-similarity,and incorporate them into the influence maximization algorithm and information propagation model.Firstly,we propose a node feature-aware voting algorithm,called ISVoteRank,for seed nodes selection.Specifically,before voting,the algorithm sets the initial voting ability of nodes in a personalized manner by combining their features.During the voting process,voting weights are set based on the interaction strength between nodes,allowing nodes to vote at different extents and subsequently weakening their voting ability accordingly.The process concludes by selecting the top k nodes with the highest voting scores as seeds,avoiding the inefficiency of iterative seed selection in traditional voting-based algorithms.Secondly,we extend the Independent Cascade(IC)model and propose the Dynamic Independent Cascade(DIC)model,which aims to capture the dynamic features in the information propagation process by combining node features.Finally,experiments demonstrate that the ISVoteRank algorithm has been improved in both effectiveness and efficiency compared to baseline methods,and the influence spread through the DIC model is improved compared to the IC model.
文摘Managing physical objects in the network’s periphery is made possible by the Internet of Things(IoT),revolutionizing human life.Open attacks and unauthorized access are possible with these IoT devices,which exchange data to enable remote access.These attacks are often detected using intrusion detection methodologies,although these systems’effectiveness and accuracy are subpar.This paper proposes a new voting classifier composed of an ensemble of machine learning models trained and optimized using metaheuristic optimization.The employed metaheuristic optimizer is a new version of the whale optimization algorithm(WOA),which is guided by the dipper throated optimizer(DTO)to improve the exploration process of the traditionalWOA optimizer.The proposed voting classifier categorizes the network intrusions robustly and efficiently.To assess the proposed approach,a dataset created from IoT devices is employed to record the efficiency of the proposed algorithm for binary attack categorization.The dataset records are balanced using the locality-sensitive hashing(LSH)and Synthetic Minority Oversampling Technique(SMOTE).The evaluation of the achieved results is performed in terms of statistical analysis and visual plots to prove the proposed approach’s effectiveness,stability,and significance.The achieved results confirmed the superiority of the proposed algorithm for the task of network intrusion detection.
基金This work was supported in part by Shandong Provincial Natural Science Foundation(ZR2019PF007)the National Key Research and Development Plan of China(2018YFB0803504)+2 种基金Basic Scientific Research Operating Expenses of Shandong University(2018ZQXM004)Guangdong Province Key Research and Development Plan(2019B010137004)the National Natural Science Foundation of China(U20B2046).
文摘Electronic voting has partially solved the problems of poor anonymity and low efficiency associated with traditional voting.However,the difficulties it introduces into the supervision of the vote counting,as well as its need for a concurrent guaranteed trusted third party,should not be overlooked.With the advent of blockchain technology in recent years,its features such as decentralization,anonymity,and non-tampering have made it a good candidate in solving the problems that electronic voting faces.In this study,we propose a multi-candidate voting model based on the blockchain technology.With the introduction of an asymmetric encryption and an anonymity-preserving voting algorithm,votes can be counted without relying on a third party,and the voting results can be displayed in real time in a manner that satisfies various levels of voting security and privacy requirements.Experimental results show that the proposed model solves the aforementioned problems of electronic voting without significant negative impact from an increasing number of voters or candidates.
文摘This paper analyzes the price difference between superior voting (SV) and inferior voting (IV) shares for three dual-class firms: Farmer Mac as a big price discount case, Fox as a price similarity case, and Heico as a big price premium case. We show that the price difference is mainly affected by the control benefit, while voting power and liquidity are also relevant factors. We suggest that the control benefit can be revealed by examining share accumulation and firm performance.
文摘Phishing is one of the most common social engineering attacks that users over the internet fall for. An example is voting systems, and because such systems should be accurate and error free, phishing prevention techniques are crucial. Visual Cryptography (VC) is utilized for efficient voting system authentication to cast votes. VC is one of the most secure approaches for privacy protection as it ensures the confidentiality of the voting system. This paper discusses proposed phishing prevention methods and compares different proposed methods.
基金This project was supported by the National Basic Research Programof China (2001CB309403)
文摘To improve the performance of multiple classifier system, a knowledge discovery based dynamic weighted voting (KD-DWV) is proposed based on knowledge discovery. In the method, all base classifiers may be allowed to operate in different measurement/feature spaces to make the most of diverse classification information. The weights assigned to each output of a base classifier are estimated by the separability of training sample sets in relevant feature space. For this purpose, some decision tables (DTs) are established in terms of the diverse feature sets. And then the uncertainty measures of the separability are induced, in the form of mass functions in Dempster-Shafer theory (DST), from each DTs based on generalized rough set model. From the mass functions, all the weights are calculated by a modified heuristic fusion function and assigned dynamically to each classifier varying with its output. The comparison experiment is performed on the hyperspectral remote sensing images. And the experimental results show that the performance of the classification can be improved by using the proposed method compared with the plurality voting (PV).
基金supported by the National Natural Science Foundation of China(6177340561751312)the Major Scientific and Technological Innovation Projects of Shandong Province(2019JZZY020123)。
文摘Extreme learning machine(ELM)has been proved to be an effective pattern classification and regression learning mechanism by researchers.However,its good performance is based on a large number of hidden layer nodes.With the increase of the nodes in the hidden layers,the computation cost is greatly increased.In this paper,we propose a novel algorithm,named constrained voting extreme learning machine(CV-ELM).Compared with the traditional ELM,the CV-ELM determines the input weight and bias based on the differences of between-class samples.At the same time,to improve the accuracy of the proposed method,the voting selection is introduced.The proposed method is evaluated on public benchmark datasets.The experimental results show that the proposed algorithm is superior to the original ELM algorithm.Further,we apply the CV-ELM to the classification of superheat degree(SD)state in the aluminum electrolysis industry,and the recognition accuracy rate reaches87.4%,and the experimental results demonstrate that the proposed method is more robust than the existing state-of-the-art identification methods.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61272495,61379153,and 61401519)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20130162110012)the MEST-NRF of Korea(Grant No.2012-002521)
文摘We investigate the design of anonymous voting protocols,CV-based binary-valued ballot and CV-based multi-valued ballot with continuous variables(CV) in a multi-dimensional quantum cryptosystem to ensure the security of voting procedure and data privacy.The quantum entangled states are employed in the continuous variable quantum system to carry the voting information and assist information transmission,which takes the advantage of the GHZ-like states in terms of improving the utilization of quantum states by decreasing the number of required quantum states.It provides a potential approach to achieve the efficient quantum anonymous voting with high transmission security,especially in large-scale votes.
基金Supported by the National Natural Science Foun-dation of China (60572155) the National Nature Science Founda-tion of China for Distinguished Young Scholars (60225007)
文摘In this paper, we use the polynomial function and Chaum's RSA (Rivest, Shamir, Adleman) blind signature scheme to construct a secure anonymous internet electronic voting scheme. In our scheme, each vote does not need to be revealed in the tallying phase. The ballot number of each candidate gets is counted by computing the degrees of two polynomials' greatest common divisor. Our scheme does not require a special voting channel and communication can occur entirely over the current internet.
基金Science Research Project of Gansu Provincial Transportation Department(No.2017-012)
文摘The random forest model is universal and easy to understand, which is often used for classification and prediction. However, it uses non-selective integration and the majority rule to judge the final result, thus the difference between the decision trees in the model is ignored and the prediction accuracy of the model is reduced. Taking into consideration these defects, an improved random forest model based on confusion matrix (CM-RF)is proposed. The decision tree cluster is selectively constructed by the similarity measure in the process of constructing the model, and the result is output by using the dynamic weighted voting fusion method in the final voting session. Experiments show that the proposed CM-RF can reduce the impact of low-performance decision trees on the output result, thus improving the accuracy and generalization ability of random forest model.
基金The National Key R&D Program of China(No.2020YFE0200600)。
文摘The communication complexity of the practical byzantine fault tolerance(PBFT)protocol is reduced with the threshold signature technique applied to the consensus process by phase voting PBFT(PV-PBFT).As most communication occurs between the primary node and replica nodes in PV-PVFT,consistency verification is accomplished through threshold signatures,multi-PV,and multiple consensus.The view replacement protocol introduces node weights to influence the election of a primary node,reducing the probability of the same node being elected primary multiple times.The experimental results of consensus algorithms show that compared to PBFT,the communication overhead of PV-PBFT decreases by approximately 90% with nearly one-time improvement in the throughput relative and approximately 2/3 consensus latency,lower than that of the scalable hierarchical byzantine fault tolerance.The communication complexity of the PBFT is O(N^(2)),whereas that of PV-PBFT is only O(N),which implies the significant improvement of the operational efficiency of the blockchain system.
文摘Oscillatory failure cases(OFC)detection in the fly-by-wire(FBW)flight control system for civil aircraft is addressed in this paper.First,OFC is ranked four levels:Handling quality,static load,global structure fatigue and local fatigue,according to their respect impact on aircraft.Second,we present voting and comparing monitors based on un-similarity redundancy commands to detect OFC.Third,the associated performances,the thresholds and the counters of the monitors are calculated by the high fidelity nonlinear aircraft models.Finally,the monitors of OFC are verified by the Iron Bird Platform with real parameters of the flight control system.The results show that our approach can detect OFC rapidly.