Understanding the mechanism of coalescence-induced self-propelled jumping behavior provides distinct insights in designing and optimizing functional coatings with self-cleaning and anti-icing properties.However,to dat...Understanding the mechanism of coalescence-induced self-propelled jumping behavior provides distinct insights in designing and optimizing functional coatings with self-cleaning and anti-icing properties.However,to date self-propelled jumping phenomenon has only been observed and studied on superhydrophobic surfaces,other than those hydrophobic surfaces with weaker but fairish water-repellency,for instance,vulcanized silicon rubber(RTV) coatings.In this work,from the perspective of thermodynamic-based energy balance aspect,the reason that self-propelled jumping phenomenon does not happen on RTV coatings is studied.The apparent contact angles of droplets on RTV coatings can be less than the theoretical critical values therefore cannot promise energy surplus for the coalesced droplets onside.Besides,on RTV and superhydrophobic surfaces,the droplet-size dependent variation characteristics of the energy leftover from the coalescence process are opposite.For the droplets coalescing on RTV coatings,the magnitudes of energy dissipations are more sensitive to the increase in droplet size,compared to that of released surface energy.While for superhydrophobic coatings,the energy generated during the coalescence process can be more sensitive than the dissipations to the change in droplet size.展开更多
This paper proposes a push-pull airflow combined with a top draft hood to conduct local exhaust in a rubber workshop.Field measurements are carried out to investigate the characteristics of the emission source,while n...This paper proposes a push-pull airflow combined with a top draft hood to conduct local exhaust in a rubber workshop.Field measurements are carried out to investigate the characteristics of the emission source,while numerical simulation is performed based on the measurement to test the capture efficiency and to further optimize various parameters including push velocity,hood height and exhaust air rate.Compared with the high-hanging hood,the low-hanging hood can effectively capture the pollutant generated by tyre with lower exhaust air rate.The capture efficiency of the low-hanging hood reaches 98.18%with exhaust air rate of 6000 m^(3)/h and push air velocity of 5m/s.The results indicates that the new ventilation appliance can effectively collect the pollutant at a relatively low exhaust rate.展开更多
文摘Understanding the mechanism of coalescence-induced self-propelled jumping behavior provides distinct insights in designing and optimizing functional coatings with self-cleaning and anti-icing properties.However,to date self-propelled jumping phenomenon has only been observed and studied on superhydrophobic surfaces,other than those hydrophobic surfaces with weaker but fairish water-repellency,for instance,vulcanized silicon rubber(RTV) coatings.In this work,from the perspective of thermodynamic-based energy balance aspect,the reason that self-propelled jumping phenomenon does not happen on RTV coatings is studied.The apparent contact angles of droplets on RTV coatings can be less than the theoretical critical values therefore cannot promise energy surplus for the coalesced droplets onside.Besides,on RTV and superhydrophobic surfaces,the droplet-size dependent variation characteristics of the energy leftover from the coalescence process are opposite.For the droplets coalescing on RTV coatings,the magnitudes of energy dissipations are more sensitive to the increase in droplet size,compared to that of released surface energy.While for superhydrophobic coatings,the energy generated during the coalescence process can be more sensitive than the dissipations to the change in droplet size.
文摘This paper proposes a push-pull airflow combined with a top draft hood to conduct local exhaust in a rubber workshop.Field measurements are carried out to investigate the characteristics of the emission source,while numerical simulation is performed based on the measurement to test the capture efficiency and to further optimize various parameters including push velocity,hood height and exhaust air rate.Compared with the high-hanging hood,the low-hanging hood can effectively capture the pollutant generated by tyre with lower exhaust air rate.The capture efficiency of the low-hanging hood reaches 98.18%with exhaust air rate of 6000 m^(3)/h and push air velocity of 5m/s.The results indicates that the new ventilation appliance can effectively collect the pollutant at a relatively low exhaust rate.