This work reports the preparation of bulk and KIT-6-diluted W-Nb-O mixed oxide bronzes by a reflux method. The influence of the incorporation of Nb and a mesoporous silica on the physicochemical features of the cataly...This work reports the preparation of bulk and KIT-6-diluted W-Nb-O mixed oxide bronzes by a reflux method. The influence of the incorporation of Nb and a mesoporous silica on the physicochemical features of the catalysts is studied. The addition of Nb favors the formation of single-phase oxide bronze structure, with improved Lewis acidity;while the incorporation of KIT-6 gives rise to well-dispersed mixed metal oxide particles on the diluter. These diluted W-Nb-O catalysts present enhanced surface areas and mesopore volumes. The materials have been tested in the valorization of an aqueous model mixture (acetol/propanal/ethanol/acetic acid/water weight ratio of 5/25/10/30/30), through C-C bond formation reactions. The increase in the Lewis nature of surface acid sites stands as the key point to maximize the total organic yield during the reaction (C5-C10 products). The best catalysts maintain their catalytic behavior after five consecutive uses.展开更多
The solubility of ammonium tungstate in a special hydrothermal condition is exploited to synthesize uniform microspheres of Ce-Cu-W-O oxides.Compared to their W-undoped counterparts,they possess more Ce^3+ and oxygen ...The solubility of ammonium tungstate in a special hydrothermal condition is exploited to synthesize uniform microspheres of Ce-Cu-W-O oxides.Compared to their W-undoped counterparts,they possess more Ce^3+ and oxygen vacancies,thereby promoting oxygen mobility.The formed rich WO3 surface can effectively provide acid sites,which is helpful for adsorption of vinyl chloride and interrupting the C-Cl bond.In addition,the presence of WO3 induces the formation of finer CuO nanoparticles with respect to the traditional coprecipitation method,thereby resulting in a better reducibility.Benefiting from both the enhanced acidity and reducibility,the Ce-Cu-W-O microspheres deliver excellent low-temperature vinyl chloride oxidation activity(a reaction rate of 2.01×10^-7 mol/(gcat·s)at 250℃)and high HCl selectivity.Moreover,subtle deactivation occurs after the three cycling activity tests,and a stable vinyl chloride conversion as well as mineralization are observed during the 72-h durability test at 300℃,which demonstrates good thermal stability.Our strategy can provide new insights into the design and synthesis of metal oxides for catalytic oxidation of chlorinated volatile organic compounds.展开更多
Z-scheme semiconductors are a promising class of photocatalysts for hydrogen generation.In this work,Z-scheme semiconductors composed of WO3-x quantum dots supported on TiO2(WO3-xQDS/TiO2) were fabricated by solvoth...Z-scheme semiconductors are a promising class of photocatalysts for hydrogen generation.In this work,Z-scheme semiconductors composed of WO3-x quantum dots supported on TiO2(WO3-xQDS/TiO2) were fabricated by solvothermal and hydrogen-reduction methods.Characterization by transmission electron microscopy and X-ray diffraction indicated that the amount and size of the WO3-x QDs could be tuned by modulating the addition of the W precursor.Evidence from X-ray photoelectron spectroscopy and photoluminescence spectroscopy suggested that the hydrogen reduction of the composite induced the formation of oxygen vacancy(W^5+/Vo) defects in WO3.These defects led to ohmic contact between WO3-x and TiO2,which altered the charge-transfer pathway from type Ⅱ heterojunction to Z-scheme,and maintained the highly reductive and oxidative ability of TiO2 and WO3-x,respectively.Therefore,the Z-scheme sample showed 1.3-fold higher photoactivity than pure TiO2 in hydrogen generation.These results suggest that the formation of W^5+/Vo defects at the interface is highly beneficial for the fabrication of Z-scheme photocatalysts.展开更多
A series of mesoporous Ta and Ta-W oxides have been prepared and employed as solid acid catalysts for the dehydration of fructose and glucose to 5-hydroxymethylfurfural(HMF).Solid state 31 P MAS NMR spectroscopic resu...A series of mesoporous Ta and Ta-W oxides have been prepared and employed as solid acid catalysts for the dehydration of fructose and glucose to 5-hydroxymethylfurfural(HMF).Solid state 31 P MAS NMR spectroscopic results using trimethylphosphine(TMP)as a probe molecule show that the acid strength and the ratio of Br?nsted to Lewis acid sites increase gradually with the addition of tungsten in tantalum oxide.It is found that high sugar conversion and HMF selectivity are achieved over catalyst with relatively high ratios of Br?nsted to Lewis acid sites.Unexpected stoichiometric excess of formic acid relative to levulinic acid can be observed mainly because of direct decomposition of fructose over Lewis acid sites.The addition of 2-butanol leads to the increase of sugars conversion and the HMF selectivity,especially for the catalyst with high ratio of Br?nsted to Lewis acid sites.Among them,Ta7W3 oxide catalyst shows 54%HMF selectivity and good reusability with the addition of 2-butanol by extracting HMF from aqueous phase and removing humins deposed on the surface of the catalyst.展开更多
This paper describes the design of a FeWOx-based oxygen carrier for the chemical partial oxidation of methane(CLPOM).Thermodynamic screening and kinetic analyses both forecast the FeWOx-based oxygen carrier as a promi...This paper describes the design of a FeWOx-based oxygen carrier for the chemical partial oxidation of methane(CLPOM).Thermodynamic screening and kinetic analyses both forecast the FeWOx-based oxygen carrier as a promising candidate for the production of syngas.The total methane conversion and syngas yield can be dramatically increased with this catalyst compared to the case with the unmodified WO3/SiO2,thereby enabling CLPOM with 62%methane conversion,93%CO gas-phase selectivity,94%H2 selectivity,and a 2.4 H2/CO ratio.The catalyst has the advantages of high availability of lattice oxygen to oxidize carbonaceous intermediates in time,together with the formation of an Fe-W alloy to promote the surface reaction.Consequently,it demonstrates excellent catalytic performance with no catalyst deactivation at 900°C and 1 atm.The excellent structural stability plays an essential role in CLPOM.As revealed via XPS and ICP,the phase segregation has not been observed due to the strong interaction between Fe and W,which resulted in the formation of the Fe-W alloy during the reduction processes and the match between the ion oxidation rates of the Fe and W ions in the oxidation stage.The results provide fundamental information on the reaction mechanism of FeWOx/SiO2,and present it as a promising candidate for CLPOM.展开更多
基金Financial support by the Spanish Government(RTI2018-099668-B-C21,PGC2018-097277-B-100,and SEV-2016-0683)the Severo Ochoa Excellence Program(SVP-2014-068669)the “La Caixa-Severo Ochoa” Foundation,respectively,for their fellowships~~
文摘This work reports the preparation of bulk and KIT-6-diluted W-Nb-O mixed oxide bronzes by a reflux method. The influence of the incorporation of Nb and a mesoporous silica on the physicochemical features of the catalysts is studied. The addition of Nb favors the formation of single-phase oxide bronze structure, with improved Lewis acidity;while the incorporation of KIT-6 gives rise to well-dispersed mixed metal oxide particles on the diluter. These diluted W-Nb-O catalysts present enhanced surface areas and mesopore volumes. The materials have been tested in the valorization of an aqueous model mixture (acetol/propanal/ethanol/acetic acid/water weight ratio of 5/25/10/30/30), through C-C bond formation reactions. The increase in the Lewis nature of surface acid sites stands as the key point to maximize the total organic yield during the reaction (C5-C10 products). The best catalysts maintain their catalytic behavior after five consecutive uses.
文摘The solubility of ammonium tungstate in a special hydrothermal condition is exploited to synthesize uniform microspheres of Ce-Cu-W-O oxides.Compared to their W-undoped counterparts,they possess more Ce^3+ and oxygen vacancies,thereby promoting oxygen mobility.The formed rich WO3 surface can effectively provide acid sites,which is helpful for adsorption of vinyl chloride and interrupting the C-Cl bond.In addition,the presence of WO3 induces the formation of finer CuO nanoparticles with respect to the traditional coprecipitation method,thereby resulting in a better reducibility.Benefiting from both the enhanced acidity and reducibility,the Ce-Cu-W-O microspheres deliver excellent low-temperature vinyl chloride oxidation activity(a reaction rate of 2.01×10^-7 mol/(gcat·s)at 250℃)and high HCl selectivity.Moreover,subtle deactivation occurs after the three cycling activity tests,and a stable vinyl chloride conversion as well as mineralization are observed during the 72-h durability test at 300℃,which demonstrates good thermal stability.Our strategy can provide new insights into the design and synthesis of metal oxides for catalytic oxidation of chlorinated volatile organic compounds.
基金supported by the National Natural Science Foundation of China (21506156, 21676193)the Tianjin Municipal Natural Science Foundation (15JCZDJC37300, 16JCQNJC05200)~~
文摘Z-scheme semiconductors are a promising class of photocatalysts for hydrogen generation.In this work,Z-scheme semiconductors composed of WO3-x quantum dots supported on TiO2(WO3-xQDS/TiO2) were fabricated by solvothermal and hydrogen-reduction methods.Characterization by transmission electron microscopy and X-ray diffraction indicated that the amount and size of the WO3-x QDs could be tuned by modulating the addition of the W precursor.Evidence from X-ray photoelectron spectroscopy and photoluminescence spectroscopy suggested that the hydrogen reduction of the composite induced the formation of oxygen vacancy(W^5+/Vo) defects in WO3.These defects led to ohmic contact between WO3-x and TiO2,which altered the charge-transfer pathway from type Ⅱ heterojunction to Z-scheme,and maintained the highly reductive and oxidative ability of TiO2 and WO3-x,respectively.Therefore,the Z-scheme sample showed 1.3-fold higher photoactivity than pure TiO2 in hydrogen generation.These results suggest that the formation of W^5+/Vo defects at the interface is highly beneficial for the fabrication of Z-scheme photocatalysts.
文摘A series of mesoporous Ta and Ta-W oxides have been prepared and employed as solid acid catalysts for the dehydration of fructose and glucose to 5-hydroxymethylfurfural(HMF).Solid state 31 P MAS NMR spectroscopic results using trimethylphosphine(TMP)as a probe molecule show that the acid strength and the ratio of Br?nsted to Lewis acid sites increase gradually with the addition of tungsten in tantalum oxide.It is found that high sugar conversion and HMF selectivity are achieved over catalyst with relatively high ratios of Br?nsted to Lewis acid sites.Unexpected stoichiometric excess of formic acid relative to levulinic acid can be observed mainly because of direct decomposition of fructose over Lewis acid sites.The addition of 2-butanol leads to the increase of sugars conversion and the HMF selectivity,especially for the catalyst with high ratio of Br?nsted to Lewis acid sites.Among them,Ta7W3 oxide catalyst shows 54%HMF selectivity and good reusability with the addition of 2-butanol by extracting HMF from aqueous phase and removing humins deposed on the surface of the catalyst.
文摘This paper describes the design of a FeWOx-based oxygen carrier for the chemical partial oxidation of methane(CLPOM).Thermodynamic screening and kinetic analyses both forecast the FeWOx-based oxygen carrier as a promising candidate for the production of syngas.The total methane conversion and syngas yield can be dramatically increased with this catalyst compared to the case with the unmodified WO3/SiO2,thereby enabling CLPOM with 62%methane conversion,93%CO gas-phase selectivity,94%H2 selectivity,and a 2.4 H2/CO ratio.The catalyst has the advantages of high availability of lattice oxygen to oxidize carbonaceous intermediates in time,together with the formation of an Fe-W alloy to promote the surface reaction.Consequently,it demonstrates excellent catalytic performance with no catalyst deactivation at 900°C and 1 atm.The excellent structural stability plays an essential role in CLPOM.As revealed via XPS and ICP,the phase segregation has not been observed due to the strong interaction between Fe and W,which resulted in the formation of the Fe-W alloy during the reduction processes and the match between the ion oxidation rates of the Fe and W ions in the oxidation stage.The results provide fundamental information on the reaction mechanism of FeWOx/SiO2,and present it as a promising candidate for CLPOM.