We study some homological properties of Gorenstein FP∞-injective modules,and we prove(1)a ring R is not necessarily coherent if every Gorenstein FP∞-injective R-module is injective,and(2)a ring R is not necessarily ...We study some homological properties of Gorenstein FP∞-injective modules,and we prove(1)a ring R is not necessarily coherent if every Gorenstein FP∞-injective R-module is injective,and(2)a ring R is not necessarily coherent if every Gorenstein injective R-module is injective.In addition,we characterize w-Noetherian rings in terms of Gorenstein FP∞-injective modules,and we prove that a ring R is w-Noetherian if and only if every GV-torsion-free FP∞-injective R-module is Gorenstein FP∞-injective,if and only if any direct sum of GV-torsion-free FP∞-injective R-modules is Gorenstein FP∞-injective.展开更多
Let R ■ T be an extension of commutative rings.T is called w-linked over R if T as an R-module is a w-module.In the case of R ■ T ■ Q 0 (R),T is called a w-linked overring of R.As a generalization of Wang-McCslan...Let R ■ T be an extension of commutative rings.T is called w-linked over R if T as an R-module is a w-module.In the case of R ■ T ■ Q 0 (R),T is called a w-linked overring of R.As a generalization of Wang-McCsland-Park-Chang Theorem,we show that if R is a reduced ring,then R is a w-Noetherian ring with w-dim(R) 1 if and only if each w-linked overring T of R is a w-Noetherian ring with w-dim(T ) 1.In particular,R is a w-Noetherian ring with w-dim(R) = 0 if and only if R is an Artinian ring.展开更多
基金supported by the Scientific Research Foundation of Chengdu University of Information Technology(No.KYTZ202015)supported by NSFC(No.12061001).
文摘We study some homological properties of Gorenstein FP∞-injective modules,and we prove(1)a ring R is not necessarily coherent if every Gorenstein FP∞-injective R-module is injective,and(2)a ring R is not necessarily coherent if every Gorenstein injective R-module is injective.In addition,we characterize w-Noetherian rings in terms of Gorenstein FP∞-injective modules,and we prove that a ring R is w-Noetherian if and only if every GV-torsion-free FP∞-injective R-module is Gorenstein FP∞-injective,if and only if any direct sum of GV-torsion-free FP∞-injective R-modules is Gorenstein FP∞-injective.
基金Supported by the National Natural Science Foundation of China (Grant No. 10671137)Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20060636001)
文摘Let R ■ T be an extension of commutative rings.T is called w-linked over R if T as an R-module is a w-module.In the case of R ■ T ■ Q 0 (R),T is called a w-linked overring of R.As a generalization of Wang-McCsland-Park-Chang Theorem,we show that if R is a reduced ring,then R is a w-Noetherian ring with w-dim(R) 1 if and only if each w-linked overring T of R is a w-Noetherian ring with w-dim(T ) 1.In particular,R is a w-Noetherian ring with w-dim(R) = 0 if and only if R is an Artinian ring.