Let R be a commutative domain with 1 and Q(≠R)its field of quotients.In this note an R-module M is called w_(∞)-Warfield cotorsion if M∈WC∩P^(⊥)_(w_(∞)),where WC denotes the class of all Warfield cotorsion R-mod...Let R be a commutative domain with 1 and Q(≠R)its field of quotients.In this note an R-module M is called w_(∞)-Warfield cotorsion if M∈WC∩P^(⊥)_(w_(∞)),where WC denotes the class of all Warfield cotorsion R-modules and P_(w_(∞))the class of all w_(∞)-projective R-modules.It is shown that R is a PVMD if and only if all w-cotorsion R-modules are w_(∞)-Warfield cotorsion,and that R is a Krull domain if and only if every w-Matlis cotorsion strong w-module over R is a w_(∞)-Warfield cotorsion w-module.展开更多
Let R ■ T be an extension of commutative rings.T is called w-linked over R if T as an R-module is a w-module.In the case of R ■ T ■ Q 0 (R),T is called a w-linked overring of R.As a generalization of Wang-McCslan...Let R ■ T be an extension of commutative rings.T is called w-linked over R if T as an R-module is a w-module.In the case of R ■ T ■ Q 0 (R),T is called a w-linked overring of R.As a generalization of Wang-McCsland-Park-Chang Theorem,we show that if R is a reduced ring,then R is a w-Noetherian ring with w-dim(R) 1 if and only if each w-linked overring T of R is a w-Noetherian ring with w-dim(T ) 1.In particular,R is a w-Noetherian ring with w-dim(R) = 0 if and only if R is an Artinian ring.展开更多
基金This work was partially supported by the Sichuan Science and Technology Program(2023NSFSC0074)the National Natural Science Foundation of China(11961050,12061001)Aba Teachers University(ASS20230106,20210403005,20220301016).
文摘Let R be a commutative domain with 1 and Q(≠R)its field of quotients.In this note an R-module M is called w_(∞)-Warfield cotorsion if M∈WC∩P^(⊥)_(w_(∞)),where WC denotes the class of all Warfield cotorsion R-modules and P_(w_(∞))the class of all w_(∞)-projective R-modules.It is shown that R is a PVMD if and only if all w-cotorsion R-modules are w_(∞)-Warfield cotorsion,and that R is a Krull domain if and only if every w-Matlis cotorsion strong w-module over R is a w_(∞)-Warfield cotorsion w-module.
基金Supported by the National Natural Science Foundation of China (Grant No. 10671137)Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20060636001)
文摘Let R ■ T be an extension of commutative rings.T is called w-linked over R if T as an R-module is a w-module.In the case of R ■ T ■ Q 0 (R),T is called a w-linked overring of R.As a generalization of Wang-McCsland-Park-Chang Theorem,we show that if R is a reduced ring,then R is a w-Noetherian ring with w-dim(R) 1 if and only if each w-linked overring T of R is a w-Noetherian ring with w-dim(T ) 1.In particular,R is a w-Noetherian ring with w-dim(R) = 0 if and only if R is an Artinian ring.