Electrostatic chucks are one of the core components of semiconductor devices. As a key index of electrostatic chucks, the clamping force must be controlled within a reasonable range. Therefore, it is essential to accu...Electrostatic chucks are one of the core components of semiconductor devices. As a key index of electrostatic chucks, the clamping force must be controlled within a reasonable range. Therefore, it is essential to accurately measure the clamping force. To reduce the negative factors influencing measurement precision and repeatability, this article presents a novel method to measure the clamping force and we elaborate both the principle and the key procedure. A micro-force probe component is introduced to monitor, adjust, and eliminate the gap between the wafer and the electrostatic chuck. The contact force between the ruby probe and the wafer is selected as an important parameter to characterize de-chucking, and we have found that the moment of de-chucking can be exactly judged. Moreover, this article derives the formula calibrating equivalent action area of backside gas pressure under real working conditions, which can effectively connect the backside gas pressure at the moment of de-chucking and the clamping force. The experiments were then performed on a self-designed measuring platform.The de-chucking mechanism is discussed in light of our analysis of the experimental data. Determination criteria for de-chucking point are summed up. It is found that the relationship between de-chucking pressure and applied voltage conforms well to quadratic equation. Meanwhile, the result reveals that actual de-chucking behavior is much more complicated than the description given in the classical empirical formula.展开更多
Double-spindle triple-workstation(DSTW) ultra precision grinders are mainly used in production lines for manufacturing and back thinning large diameter(≥300 mm) silicon wafers for integrated circuits.It is import...Double-spindle triple-workstation(DSTW) ultra precision grinders are mainly used in production lines for manufacturing and back thinning large diameter(≥300 mm) silicon wafers for integrated circuits.It is important, but insufficiently studied,to control the wafer shape ground on a DSTW grinder by adjusting the inclination angles of the spindles and work tables.In this paper,the requirements of the inclination angle adjustment of the grinding spindles and work tables in DSTW wafer grinders are analyzed.A reasonable configuration of the grinding spindles and work tables in DSTW wafer grinders are proposed.Based on the proposed configuration,an adjustment method of the inclination angle of grinding spindles and work tables for DSTW wafer grinders is put forward. The mathematical models of wafer shape with the adjustment amount of inclination angles for both fine and rough grinding spindles are derived.The proposed grinder configuration and adjustment method will provide helpful instruction for DSTW wafer grinder design.展开更多
基金Project supported by No.02 National Science and Technology Major Project of China(No.2011ZX02403-004)
文摘Electrostatic chucks are one of the core components of semiconductor devices. As a key index of electrostatic chucks, the clamping force must be controlled within a reasonable range. Therefore, it is essential to accurately measure the clamping force. To reduce the negative factors influencing measurement precision and repeatability, this article presents a novel method to measure the clamping force and we elaborate both the principle and the key procedure. A micro-force probe component is introduced to monitor, adjust, and eliminate the gap between the wafer and the electrostatic chuck. The contact force between the ruby probe and the wafer is selected as an important parameter to characterize de-chucking, and we have found that the moment of de-chucking can be exactly judged. Moreover, this article derives the formula calibrating equivalent action area of backside gas pressure under real working conditions, which can effectively connect the backside gas pressure at the moment of de-chucking and the clamping force. The experiments were then performed on a self-designed measuring platform.The de-chucking mechanism is discussed in light of our analysis of the experimental data. Determination criteria for de-chucking point are summed up. It is found that the relationship between de-chucking pressure and applied voltage conforms well to quadratic equation. Meanwhile, the result reveals that actual de-chucking behavior is much more complicated than the description given in the classical empirical formula.
基金Project supported by the National High Technology Research and Development Program of China(No.2008AA042505)the National Science and Technology Key Project Program(No.2009ZX02011)the Natural Science Foundation of Guangdong Province,China (No.U0734008)
文摘Double-spindle triple-workstation(DSTW) ultra precision grinders are mainly used in production lines for manufacturing and back thinning large diameter(≥300 mm) silicon wafers for integrated circuits.It is important, but insufficiently studied,to control the wafer shape ground on a DSTW grinder by adjusting the inclination angles of the spindles and work tables.In this paper,the requirements of the inclination angle adjustment of the grinding spindles and work tables in DSTW wafer grinders are analyzed.A reasonable configuration of the grinding spindles and work tables in DSTW wafer grinders are proposed.Based on the proposed configuration,an adjustment method of the inclination angle of grinding spindles and work tables for DSTW wafer grinders is put forward. The mathematical models of wafer shape with the adjustment amount of inclination angles for both fine and rough grinding spindles are derived.The proposed grinder configuration and adjustment method will provide helpful instruction for DSTW wafer grinder design.