High-performance, Si-based three-dimensional (3D) microbattery systems for powering micro/nano- electromechanical systems and lab-on-chip smart electro- nic devices have attracted increasing research attention. Thes...High-performance, Si-based three-dimensional (3D) microbattery systems for powering micro/nano- electromechanical systems and lab-on-chip smart electro- nic devices have attracted increasing research attention. These systems are characterized by compatible fabrication and integratibility resulting from the silicon-based tech- nologies used in their production. The use of support substrates, electrodes or current collectors, electrolytes, and even batteries used in 3D layouts has become increasingly important in fabricating microbatteries with high energy, high power density, and wide-ranging applications. In this review, Si-based 3D microbatteries and related fabrication technologies, especially the pro- duction of micro-lithium ion batteries, are reviewed and discussed in detail in order to provide guidance for the design and fabrication.展开更多
The applied laser energy absorbed in a local area in laser thermal stress cleaving of brittle materials using a controlled fracture technique produces tensile thermal stress that causes the material to separate along ...The applied laser energy absorbed in a local area in laser thermal stress cleaving of brittle materials using a controlled fracture technique produces tensile thermal stress that causes the material to separate along the moving direction of the laser beam. The material separation is similar to crack extension, but the fracture growth is controllable. Using heat transfer theory, we establish a three-dimensional (3D) mathematical thermoelastic calculational model containing a pre-existing crack for a two-point pulsed Nd:YAG laser cleaving silicon wafer. The temperature field and thermal stress field in the silicon wafer are obtained by using the finite element method (FEM). The distribution of the tensile stress and changes in stress intensity factor around the crack tip are analyzed during the pulse duration. Meanwhile, the mechanism of crack propagation is investigated by analyzing the development of the thermal stress field during the cleaving process.展开更多
Two-dimensional (2D) slab photonic crystal waveguides (PCWGs) on silicon-on-insulator (SOI) wafer were designed and fabricated. Full photonic band gap, band gap guided mode, and index guided mode were observed b...Two-dimensional (2D) slab photonic crystal waveguides (PCWGs) on silicon-on-insulator (SOI) wafer were designed and fabricated. Full photonic band gap, band gap guided mode, and index guided mode were observed by measuring the transmission spectra. Mini-stop-bands in the PCWG were simulated with different structure parameters. Coupling characteristics of PCWG were investigated theoretically considering the imperfections during the fabrication process. It was found that suppressing power reservation effect can realize both short coupling length and high coupling efficiency.展开更多
文摘High-performance, Si-based three-dimensional (3D) microbattery systems for powering micro/nano- electromechanical systems and lab-on-chip smart electro- nic devices have attracted increasing research attention. These systems are characterized by compatible fabrication and integratibility resulting from the silicon-based tech- nologies used in their production. The use of support substrates, electrodes or current collectors, electrolytes, and even batteries used in 3D layouts has become increasingly important in fabricating microbatteries with high energy, high power density, and wide-ranging applications. In this review, Si-based 3D microbatteries and related fabrication technologies, especially the pro- duction of micro-lithium ion batteries, are reviewed and discussed in detail in order to provide guidance for the design and fabrication.
文摘The applied laser energy absorbed in a local area in laser thermal stress cleaving of brittle materials using a controlled fracture technique produces tensile thermal stress that causes the material to separate along the moving direction of the laser beam. The material separation is similar to crack extension, but the fracture growth is controllable. Using heat transfer theory, we establish a three-dimensional (3D) mathematical thermoelastic calculational model containing a pre-existing crack for a two-point pulsed Nd:YAG laser cleaving silicon wafer. The temperature field and thermal stress field in the silicon wafer are obtained by using the finite element method (FEM). The distribution of the tensile stress and changes in stress intensity factor around the crack tip are analyzed during the pulse duration. Meanwhile, the mechanism of crack propagation is investigated by analyzing the development of the thermal stress field during the cleaving process.
基金the National Natural Science Foundation of China(NSFC-60537010)the National"973"Program of China(No.2007CB307004 and 2006CB302804)
文摘Two-dimensional (2D) slab photonic crystal waveguides (PCWGs) on silicon-on-insulator (SOI) wafer were designed and fabricated. Full photonic band gap, band gap guided mode, and index guided mode were observed by measuring the transmission spectra. Mini-stop-bands in the PCWG were simulated with different structure parameters. Coupling characteristics of PCWG were investigated theoretically considering the imperfections during the fabrication process. It was found that suppressing power reservation effect can realize both short coupling length and high coupling efficiency.