Based on the existing plant layout and process flow,a simulation analysis was conducted using the Plant Simulation platform with the utilization efficiency of each station and production capacity of the dismantling sy...Based on the existing plant layout and process flow,a simulation analysis was conducted using the Plant Simulation platform with the utilization efficiency of each station and production capacity of the dismantling system as indicators.A problem with long-term suspension in the disassembly process was determined.Based on the two optimization directions of increasing material transportation equipment and expanding the buffer capacity,a cost-oriented optimization model is established.A genetic algorithm and model simulation were used to solve the model.An optimization scheme that satisfies the production needs and has the lowest cost is proposed.The results show that the optimized dismantling system solves the suspended work problem at the dismantling station and a significant improvement in productivity and station utilization efficiency compared with the previous system.展开更多
Purpose–This study aims to introduce the achievements and benefits of applying wheel/rail-force–based maintenance interval extension of the C80 series wagon in China.Design/methodology/approach–Chinese wagons’exis...Purpose–This study aims to introduce the achievements and benefits of applying wheel/rail-force–based maintenance interval extension of the C80 series wagon in China.Design/methodology/approach–Chinese wagons’existing maintenance strategy had left a certain safety margin for the characteristics of widely running range,unstable service environment and submission to transportation organization requirements.To reduce maintenance costs,China railway(CR)has attempted to extend the maintenance interval since 2020.The maintenance cycle of C80 series heavy haul wagons is extended by three months(no stable routing)or 50,000 km(regular routing).However,in the meantime,the alarming rate of the running state,a key index to reflect the severe degree of hunting stability,by the train performance detection system(TPDS)for the C80 series heavy haul wagons has increased significantly.Findings–The present paper addresses a big data statistical way to evaluate the risk of allowing the C80 series heavy haul wagons to remain in operation longer than stipulated by the maintenance interval initial set.Through the maintenance and wayside-detectordata,whichis divided intothreestages,the extension period(three months),the current maintenance period and the previous maintenance period,this method reveals the alarming rate of hunting was correlated with maintenance interval.The maintainability of wagons will be achieved by utilizing wagon performance degradation modeling with the state of the wheelset and the often-contact side bearing.This paper also proposes a statistical model to return to the average safety level of the previous maintenance period’s baseline through correct alarming thresholds for unplanned corrective maintenance.Originality/value–The paper proposes an approach to reduce safety risk due to maintenance interval extension by effective maintenance program.The results are expected to help the railway company make the optimal solution to balance safety and the economy.展开更多
基金the Research on Key Technology of Dismantling Railway Scrap Freight Cars,No.W2021JSFW0236.
文摘Based on the existing plant layout and process flow,a simulation analysis was conducted using the Plant Simulation platform with the utilization efficiency of each station and production capacity of the dismantling system as indicators.A problem with long-term suspension in the disassembly process was determined.Based on the two optimization directions of increasing material transportation equipment and expanding the buffer capacity,a cost-oriented optimization model is established.A genetic algorithm and model simulation were used to solve the model.An optimization scheme that satisfies the production needs and has the lowest cost is proposed.The results show that the optimized dismantling system solves the suspended work problem at the dismantling station and a significant improvement in productivity and station utilization efficiency compared with the previous system.
文摘Purpose–This study aims to introduce the achievements and benefits of applying wheel/rail-force–based maintenance interval extension of the C80 series wagon in China.Design/methodology/approach–Chinese wagons’existing maintenance strategy had left a certain safety margin for the characteristics of widely running range,unstable service environment and submission to transportation organization requirements.To reduce maintenance costs,China railway(CR)has attempted to extend the maintenance interval since 2020.The maintenance cycle of C80 series heavy haul wagons is extended by three months(no stable routing)or 50,000 km(regular routing).However,in the meantime,the alarming rate of the running state,a key index to reflect the severe degree of hunting stability,by the train performance detection system(TPDS)for the C80 series heavy haul wagons has increased significantly.Findings–The present paper addresses a big data statistical way to evaluate the risk of allowing the C80 series heavy haul wagons to remain in operation longer than stipulated by the maintenance interval initial set.Through the maintenance and wayside-detectordata,whichis divided intothreestages,the extension period(three months),the current maintenance period and the previous maintenance period,this method reveals the alarming rate of hunting was correlated with maintenance interval.The maintainability of wagons will be achieved by utilizing wagon performance degradation modeling with the state of the wheelset and the often-contact side bearing.This paper also proposes a statistical model to return to the average safety level of the previous maintenance period’s baseline through correct alarming thresholds for unplanned corrective maintenance.Originality/value–The paper proposes an approach to reduce safety risk due to maintenance interval extension by effective maintenance program.The results are expected to help the railway company make the optimal solution to balance safety and the economy.