The present work uses dynamic mode decomposition(DMD) to analyze wake flow of NACA0015 airfoil with Gurney flap.The physics of DMD is first introduced.Then the PIV-measured wake flow velocity field is decomposed into ...The present work uses dynamic mode decomposition(DMD) to analyze wake flow of NACA0015 airfoil with Gurney flap.The physics of DMD is first introduced.Then the PIV-measured wake flow velocity field is decomposed into dynamical modes.The vortex shedding pattern behind the trailing edge and its high-order harmonics have been captured with abundant information such as frequency,wavelength and convection speed.It is observed that high-order dynamic modes convect faster than low-order modes;moreover the wavelength of the dynamic modes scales with the corresponding frequency in power law.展开更多
基金supported by National Natural Science Foundation of China(Grant No.10832001)Vision Foundation of Beijing University of Aeronautics and Astronautics (Grant No.YWF-10-20-003)
文摘The present work uses dynamic mode decomposition(DMD) to analyze wake flow of NACA0015 airfoil with Gurney flap.The physics of DMD is first introduced.Then the PIV-measured wake flow velocity field is decomposed into dynamical modes.The vortex shedding pattern behind the trailing edge and its high-order harmonics have been captured with abundant information such as frequency,wavelength and convection speed.It is observed that high-order dynamic modes convect faster than low-order modes;moreover the wavelength of the dynamic modes scales with the corresponding frequency in power law.