期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Investigating the relationship between intracranial atherosclerotic plaque remodelling and diabetes using high-resolution vessel wall imaging
1
作者 Yong-Qian Mo Hai-Yu Luo +5 位作者 Han-Wen Zhang Yu-Feng Liu Kan Deng Xiao-Lei Liu Biao Huang Fan Lin 《World Journal of Diabetes》 SCIE 2024年第1期72-80,共9页
BACKGROUND Intracranial atherosclerosis,a leading cause of stroke,involves arterial plaque formation.This study explores the link between plaque remodelling patterns and diabetes using high-resolution vessel wall imag... BACKGROUND Intracranial atherosclerosis,a leading cause of stroke,involves arterial plaque formation.This study explores the link between plaque remodelling patterns and diabetes using high-resolution vessel wall imaging(HR-VWI).AIM To investigate the factors of intracranial atherosclerotic remodelling patterns and the relationship between intracranial atherosclerotic remodelling and diabetes mellitus using HR-VWI.METHODS Ninety-four patients diagnosed with middle cerebral artery or basilar artery INTRODUCTION Intracranial atherosclerotic disease is one of the main causes of ischaemic stroke in the world,accounting for approx-imately 10%of transient ischaemic attacks and 30%-50%of ischaemic strokes[1].It is the most common factor among Asian people[2].The adaptive changes in the structure and function of blood vessels that can adapt to changes in the internal and external environment are called vascular remodelling,which is a common and important pathological mechanism in atherosclerotic diseases,and the remodelling mode of atherosclerotic plaques is closely related to the occurrence of stroke.Positive remodelling(PR)is an outwards compensatory remodelling where the arterial wall grows outwards in an attempt to maintain a constant lumen diameter.For a long time,it was believed that the degree of stenosis can accurately reflect the risk of ischaemic stroke[3-5].Previous studies have revealed that lesions without significant luminal stenosis can also lead to acute events[6,7],as summarized in a recent meta-analysis study in which approximately 50%of acute/subacute ischaemic events were due to this type of lesion[6].Research[8,9]has pointed out that the PR of plaques is more dangerous and more likely to cause acute ischaemic stroke.Previous studies[10-13]have found that there are specific vascular remodelling phenomena in the coronary and carotid arteries of diabetic patients.However,due to the deep location and small lumen of intracranial arteries and limitations of imaging techniques,the relationship between intracranial arterial remodelling and diabetes is still unclear.In recent years,with the development of magnetic resonance technology and the emergence of high-resolution(HR)vascular wall imaging,a clear and multidimensional display of the intracranial vascular wall has been achieved.Therefore,in this study,HR wall imaging(HR-VWI)was used to display the remodelling characteristics of bilateral middle cerebral arteries and basilar arteries and to explore the factors of intracranial vascular remodelling and its relationship with diabetes. 展开更多
关键词 High-resolution vessel wall imaging Intracranial atherosclerosis Vascular remodelling Magnetic resonance imaging
下载PDF
Microwave Through Wall Imaging via An Induced Current Learning Method
2
作者 Pengjin Lan Jianguo Huang Tianyi Zhou 《Journal of Beijing Institute of Technology》 EI CAS 2024年第3期248-254,共7页
In this paper,an induced current learning method(ICLM)for microwave through wall imaging(TWI),named as TWI-ICLM,is proposed.In the inversion of induced current,the unknown object along with the enclosed walls are trea... In this paper,an induced current learning method(ICLM)for microwave through wall imaging(TWI),named as TWI-ICLM,is proposed.In the inversion of induced current,the unknown object along with the enclosed walls are treated as a combination of scatterers.Firstly,a non-iterative method called distorted-Born backpropagation(DB-BP)is utilized to generate the initial result.In the training stage,several convolutional neural networks(CNNs)are cascaded to improve the estimated induced current.In addition,a hybrid loss function consisting of the induced current error and the permittivity error is used to optimize the network parameters.Finally,the relative permittivity images are conducted analytically using the predicted current based on ICLM.Both the numerical and experimental TWI tests prove that,the proposed method can achieve better imaging accuracy compared to traditional distorted-Born iterative method(DBIM). 展开更多
关键词 through wall imaging inverse scattering problem convolutional neural network(CNN)
下载PDF
igh-resolution Magnetic Resonance Vessel Wall Imaging for Intracranial Arterial Stenosis 被引量:28
3
作者 Xian-Jin Zhu Wu Wang Zun-Jing Liu 《Chinese Medical Journal》 SCIE CAS CSCD 2016年第11期1363-1370,共8页
Objective: To discuss the feasibility and clinical value of high-resolution magnetic resonance vessel wall imaging (HRMR VWI) for intracranial arterial stenosis. Date Sources: We retrieved information from PubMed ... Objective: To discuss the feasibility and clinical value of high-resolution magnetic resonance vessel wall imaging (HRMR VWI) for intracranial arterial stenosis. Date Sources: We retrieved information from PubMed database up to December 2015, using various search terms including vessel wall imaging (VWI), high-resolution magnetic resonance imaging, intracranial arterial stenosis, black blood, and intracranial atherosclerosis. Study Selection: We reviewed peer-reviewed articles printed in English on imaging technique of VWI and characteristic findings of various intracranial vasculopathies on VWI. We organized this data to explain the value of VWI in clinical application. Results: VWI with black blood technique could provide high-quality images with submillimeter voxel size, and display both the vessel wall and lumen of intracranial artery simultaneously. Various intracranial vasculopathies (atherosclerotic or nonatherosclerotic) had differentiating features including pattern of wall thickening, enhancement, and vessel remodeling on VWI. This technique could be used for determining causes of stenosis, identification of stroke mechanism, risk-stratifying patients, and directing therapeutic management in clinical practice. In addition, a new morphological classification based on VWI could be established for predicting the efficacy of endovascular therapy. Conclusions: This review highlights the value of HRMR VWI for discrimination of different intracranial vasculopathies and directing therapeutic management. 展开更多
关键词 Black Blood HIGH-RESOLUTION Magnetic Resonance Images Vessel wall imaging
原文传递
Cell Wall Biology: Perspectives from Cell Wall Imaging 被引量:4
4
作者 Kieran J.D. Lee Susan E. Marcus J. Paul Knox 《Molecular Plant》 SCIE CAS CSCD 2011年第2期212-219,共8页
Polysaccharide-rich plant cell walls are important biomaterials that underpin plant growth, are major repositories for photosynthetically accumulated carbon, and, in addition, impact greatly on the human use of plants... Polysaccharide-rich plant cell walls are important biomaterials that underpin plant growth, are major repositories for photosynthetically accumulated carbon, and, in addition, impact greatly on the human use of plants. Land plant cell walls contain in the region of a dozen major polysaccharide structures that are mostly encompassed by cellulose, hemicelluloses, and pectic polysaccharides. During the evolution of land plants, polysaccharide diversification appears to have largely involved structural elaboration and diversification within these polysaccharide groups. Cell wall chemistry is well advanced and a current phase of cell wall science is aimed at placing the complex polysaccharide chemistry in cellular contexts and developing a detailed understanding of cell wall biology. Imaging cell wall glycomes is a challenging area but recent developments in the establishment of cell wall molecular probe panels and their use in high throughput procedures are leading to rapid advances in the molecular understanding of the spatial heterogeneity of individual cell walls and also cell wall differences at taxonomic levels. The challenge now is to integrate this knowledge of cell wall heterogeneity with an understanding of the molecular and physiological mechanisms that underpin cell wall properties and functions. 展开更多
关键词 Cell structure cell walls fluorescence imaging development cell wall imaging POLYSACCHARIDES
原文传递
Microscopic elasticity imaging of vessel walls based on intravascular ultrasound
5
作者 WAN Mingxi WANG Supin CUI Yaoyao LI Junbo LI Yangmei(Department of Biomedical Engineering, Xi’an Jiaotong University Xi’an 710049)Received Apr. 23, 2001 Revised Jun. 19, 2002 《Chinese Journal of Acoustics》 2002年第4期307-316,共10页
The effect of the transducer eccentricity on grayscales of intravascualr ultrasound images was corrected based on the scattering properties of high frequency ultrasound in vessel walls. The displacement and strain dis... The effect of the transducer eccentricity on grayscales of intravascualr ultrasound images was corrected based on the scattering properties of high frequency ultrasound in vessel walls. The displacement and strain distributions of vessel walls produced by tissue microelement motion were obtained using a novel motion estimation method in steps and sum based on the optical flow and genetic algorithm. Furthermore, authors firstly reconstructed 'real' elasticity distribution images of cross section tissues of vessel walls in the world. In vitro experimental results of porcine artery demonstrated the methods mentioned above are reasonable. Experimental investigation of vascular mechanics can be advanced to 2D sub-millimeter microstructure levels. These studies have potential to provide new technology means in monitoring and evaluation of Percutaneous transluminal coronary angioplasty process. 展开更多
关键词 In IVUS Microscopic elasticity imaging of vessel walls based on intravascular ultrasound
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部