To explore the optimal evaluation mechanism of open-cast mining procedure,this paper takes the actual operation status of Huolinhe No.1 Open-cast Mine as the research basis,and makes a deep analysis of the four repres...To explore the optimal evaluation mechanism of open-cast mining procedure,this paper takes the actual operation status of Huolinhe No.1 Open-cast Mine as the research basis,and makes a deep analysis of the four representative mining procedures proposed by this mine.A detailed and comprehensive evaluation system is constructed using rank-sum ratio(RSR)method.The system covers 17 key indicators and aims to evaluate the advantages and disadvantages of each scheme in an all-round and multi-angle manner.Through the calculation and analysis by RSR method,the comprehensive evaluation of the four types of mining procedure schemes is carried out,and finally the secondary river improvement project is determined as the optimal mining implementation scheme,and the joint mining scheme of the south and north areas is the alternative strategy.The research results of this paper are objective,clear and definite,can not only reveal the effectiveness and feasibility of RSR method in solving the problem of open-cast mining procedure optimization,but also provide a strong technical support and decision-making basis for the future production development of Huolinhe No.1 Open-cast Mine.Thus,this study is expected to further promote the scientific and refined process of mining operations.展开更多
Non-pillar continuous mining(NPCM) is regarded as a high-efficient, high-level and one-step mining technology, which can be divided into two substopes. Back fill stability status in substope I, which directly influenc...Non-pillar continuous mining(NPCM) is regarded as a high-efficient, high-level and one-step mining technology, which can be divided into two substopes. Back fill stability status in substope I, which directly influence the loss rate and dilution rate, etc, will determine whether the experimental research is successful or not. By employing energy method of limit analysis and finite element numerical simulation method, the critical backfill height was determined under the prerequisite condition of its stability, which put forward theoretical basis for reasonable and correct selection of backfill’s parameters. The result showed that the first backfill could not keep stable for NPCM, while the other was able to.展开更多
Taking the test stopes during continuous mining induced roof caving of Tongkeng ore-body No.92 as example, the calculation flow of unloading analysis was established. According to the unloading region division method ...Taking the test stopes during continuous mining induced roof caving of Tongkeng ore-body No.92 as example, the calculation flow of unloading analysis was established. According to the unloading region division method of the affected zone theory, and the deterioration laws of mechanics parameters of unloading rock mass, the continuous mining process in underground mine was analyzed by the software MIDAS/GTS, the mechanical response of roof rock mass unloading was studied, and the differences were analyzed with the conventional simulation. The result shows that the maximum tensile stress, subsidence displacement and equivalent plastic strain of roof rock mass are 1.5 MPa, 20 cm and 1.5% in the unloading analysis, while 1.0 MPa, 13 cm and 0.9% in the conventional analysis. The values of unloading analysis, which are also closer to the actual situation, are greater than those of conventional analysis; the maximum step in continuous mining is 48 m, which shows that the induced treatment of the roof should be carried out after 2 mining steps展开更多
For the 110 mining method,it is challenging to accurately calculate the support resistance of the roadway due to the lack of understanding of the dynamic movement of the overlying strata in this method.The consequenti...For the 110 mining method,it is challenging to accurately calculate the support resistance of the roadway due to the lack of understanding of the dynamic movement of the overlying strata in this method.The consequential excessive support results in a significant increase in the cost of roadway support.The authors explored the overlying strata movement and roadway deformation of the gob-entry retaining in the 110 mining method to solve this problem.First,the typical stages of the roof-cutting gob-side entry were defined.Second,the mechanical model and calculation formula of the support resistance on the roof were explored.Then,using numerical simulation software,the starting ranges of the specific supports at different stages were verified and the feasibility of the support scheme was examined.Finally,combined with the field measurement data,the stress and the deformation of the gob roadway at different stages under the influence of two mining processes in the 110 mining method were obtained.The numerical simulation results obtained are consistent with the field test results,providing a theoretical basis for precision support at different stages by the 110 mining method.展开更多
The application of a double-face reinforced retaining wall during road construction can reduce engineering costs, speed road paving and have a good influence on environment. An ABAQUS numerical model of a double-face ...The application of a double-face reinforced retaining wall during road construction can reduce engineering costs, speed road paving and have a good influence on environment. An ABAQUS numerical model of a double-face reinforced retaining wall was built. The influence of surface subsidence induced by mining was considered. A physical model test was also performed in the laboratory on a reinforced retaining wall. The influence of subsidence induced by mining was observed. The numerical results match measurements in the laboratory very well. The vertical pressure on the base of the retaining wall, the horizontal displacement of the wall and the horizontal soil pressure acting on the wall were analyzed. The differential settlement of the reinforced belt and axial forces in the wall were also studied.展开更多
A non-blasting mechanized mining experiment was carried out with a high-frequency impact hammer,and the daily mining performance was recorded to explore the applicability of the high-frequency impact hammer in deep ha...A non-blasting mechanized mining experiment was carried out with a high-frequency impact hammer,and the daily mining performance was recorded to explore the applicability of the high-frequency impact hammer in deep hard rock mines.Before the field application,the scope of the excavation damage zone was monitored,and rock samples were obtained from the ore body to be mined to carry out a series of laboratory experiments.Field application results show that the overall excavation efficiency reaches 50.6 t/h,and the efficiency of pillar excavation after excavating stress relief slot reaches 158.2 t/h.The results indicate that the non-blasting mechanized mining using high-frequency impact hammer has a good application in deep hard rock mines,and the stress relief slot is conducive to mechanical excavation.In addition,the high-frequency impact hammer also exhibits the advantages of high utilization rate of labor hours,small lumpiness of spalling ore,little dust,and little excavation damage.Finally,according to the field application and laboratory experiment results,a non-blasting mechanized mining method for hard rock mines based on high-frequency impact hammer is proposed.展开更多
Rock failure phenomena,such as rockburst,slabbing(or spalling) and zonal disintegration,related to deep underground excavation of hard rocks are frequently reported and pose a great threat to deep mining.Currently,the...Rock failure phenomena,such as rockburst,slabbing(or spalling) and zonal disintegration,related to deep underground excavation of hard rocks are frequently reported and pose a great threat to deep mining.Currently,the explanation for these failure phenomena using existing dynamic or static rock mechanics theory is not straightforward.In this study,new theory and testing method for deep underground rock mass under coupled static-dynamic loading are introduced.Two types of coupled loading modes,i.e.'critical static stress + slight disturbance' and 'elastic static stress + impact disturbance',are proposed,and associated test devices are developed.Rockburst phenomena of hard rocks under coupled static-dynamic loading are successfully reproduced in the laboratory,and the rockburst mechanism and related criteria are demonstrated.The results of true triaxial unloading compression tests on granite and red sandstone indicate that the unloading can induce slabbing when the confining pressure exceeds a certain threshold,and the slabbing failure strength is lower than the shear failure strength according to the conventional Mohr-Column criterion.Numerical results indicate that the rock unloading failure response under different in situ stresses and unloading rates can be characterized by an equivalent strain energy density.In addition,we present a new microseismic source location method without premeasuring the sound wave velocity in rock mass,which can efficiently and accurately locate the rock failure in hard rock mines.Also,a new idea for deep hard rock mining using a non-explosive continuous mining method is briefly introduced.展开更多
This paper describes the state-of-the-art and Outlook of coal mining and clean coal technology in China. As the major mining method,underground mining accounts for 96% of the total production. Among the state own mine...This paper describes the state-of-the-art and Outlook of coal mining and clean coal technology in China. As the major mining method,underground mining accounts for 96% of the total production. Among the state own mines, the percentage of mechanized mining reached 71 %. A rapid development of high-productive and high-profitable mines,especially those with longwall sublevel caving method, is described. The issues of heavy duty equipment, roof bolting,mine safety are also addressed. The Chinese government is paying more and more attention on the environmental problems inducing from coal mining,processing and utilization. A basic framework of clean coal technology is being formed and a wide range of technology is included.展开更多
针对在越江海高水压水下超大直径盾构隧道联络通道施工过程中缺乏足够的工程技术标准和案例经验、设计与施工面临众多挑战问题,以广州海珠湾超大直径盾构隧道区间的6条联络通道工程为例,对工程地质补勘资料及现场施工情况进行分析,揭示...针对在越江海高水压水下超大直径盾构隧道联络通道施工过程中缺乏足够的工程技术标准和案例经验、设计与施工面临众多挑战问题,以广州海珠湾超大直径盾构隧道区间的6条联络通道工程为例,对工程地质补勘资料及现场施工情况进行分析,揭示原矿山法设计施工方案存在的不足,并基于此提出“矿山法结合地层冻结加固方案”和“机械顶管法施工方案”2种优化方案;随后在安全性、经济性、施工工期等方面对不同工法进行综合优选分析,同时引入碳排放指标进行绿色低碳评估。研究结果表明:1)机械顶管法在安全性和施工效率上优于其他方案,能够显著缩短施工周期;2)相比矿山法结合地层冻结加固方案,机械顶管法方案碳排放量减少了2 747.51 t CO_(2e)。展开更多
文摘To explore the optimal evaluation mechanism of open-cast mining procedure,this paper takes the actual operation status of Huolinhe No.1 Open-cast Mine as the research basis,and makes a deep analysis of the four representative mining procedures proposed by this mine.A detailed and comprehensive evaluation system is constructed using rank-sum ratio(RSR)method.The system covers 17 key indicators and aims to evaluate the advantages and disadvantages of each scheme in an all-round and multi-angle manner.Through the calculation and analysis by RSR method,the comprehensive evaluation of the four types of mining procedure schemes is carried out,and finally the secondary river improvement project is determined as the optimal mining implementation scheme,and the joint mining scheme of the south and north areas is the alternative strategy.The research results of this paper are objective,clear and definite,can not only reveal the effectiveness and feasibility of RSR method in solving the problem of open-cast mining procedure optimization,but also provide a strong technical support and decision-making basis for the future production development of Huolinhe No.1 Open-cast Mine.Thus,this study is expected to further promote the scientific and refined process of mining operations.
文摘Non-pillar continuous mining(NPCM) is regarded as a high-efficient, high-level and one-step mining technology, which can be divided into two substopes. Back fill stability status in substope I, which directly influence the loss rate and dilution rate, etc, will determine whether the experimental research is successful or not. By employing energy method of limit analysis and finite element numerical simulation method, the critical backfill height was determined under the prerequisite condition of its stability, which put forward theoretical basis for reasonable and correct selection of backfill’s parameters. The result showed that the first backfill could not keep stable for NPCM, while the other was able to.
基金Projects (50934006, 51074178) supported by the National Natural Science Foundation of ChinaProject (2010QZZD001) supported by the Fundamental Research Funds for the Central Universities of China
文摘Taking the test stopes during continuous mining induced roof caving of Tongkeng ore-body No.92 as example, the calculation flow of unloading analysis was established. According to the unloading region division method of the affected zone theory, and the deterioration laws of mechanics parameters of unloading rock mass, the continuous mining process in underground mine was analyzed by the software MIDAS/GTS, the mechanical response of roof rock mass unloading was studied, and the differences were analyzed with the conventional simulation. The result shows that the maximum tensile stress, subsidence displacement and equivalent plastic strain of roof rock mass are 1.5 MPa, 20 cm and 1.5% in the unloading analysis, while 1.0 MPa, 13 cm and 0.9% in the conventional analysis. The values of unloading analysis, which are also closer to the actual situation, are greater than those of conventional analysis; the maximum step in continuous mining is 48 m, which shows that the induced treatment of the roof should be carried out after 2 mining steps
基金Project(51674265) supported by the National Natural Science Foundation of ChinaProjects(2018YFC0603705,2016YFC0600901) supported by the State Key Research Development Program of ChinaProject supported by the Yueqi Outstanding Scholar Award Program of China University of Mining&Technology,Beijing,China。
文摘For the 110 mining method,it is challenging to accurately calculate the support resistance of the roadway due to the lack of understanding of the dynamic movement of the overlying strata in this method.The consequential excessive support results in a significant increase in the cost of roadway support.The authors explored the overlying strata movement and roadway deformation of the gob-entry retaining in the 110 mining method to solve this problem.First,the typical stages of the roof-cutting gob-side entry were defined.Second,the mechanical model and calculation formula of the support resistance on the roof were explored.Then,using numerical simulation software,the starting ranges of the specific supports at different stages were verified and the feasibility of the support scheme was examined.Finally,combined with the field measurement data,the stress and the deformation of the gob roadway at different stages under the influence of two mining processes in the 110 mining method were obtained.The numerical simulation results obtained are consistent with the field test results,providing a theoretical basis for precision support at different stages by the 110 mining method.
基金Projects 50874105 supported by the National Natural Science Foundation of China20070290532 by the Specialized Research Fund for Doctoral Program of Higher Education
文摘The application of a double-face reinforced retaining wall during road construction can reduce engineering costs, speed road paving and have a good influence on environment. An ABAQUS numerical model of a double-face reinforced retaining wall was built. The influence of surface subsidence induced by mining was considered. A physical model test was also performed in the laboratory on a reinforced retaining wall. The influence of subsidence induced by mining was observed. The numerical results match measurements in the laboratory very well. The vertical pressure on the base of the retaining wall, the horizontal displacement of the wall and the horizontal soil pressure acting on the wall were analyzed. The differential settlement of the reinforced belt and axial forces in the wall were also studied.
基金supported by the National Natural Science Foundation of China (Nos. 52174099, 51904333)the Natural Science Foundation of Hunan Province, China (No. 2021JJ30842)
文摘A non-blasting mechanized mining experiment was carried out with a high-frequency impact hammer,and the daily mining performance was recorded to explore the applicability of the high-frequency impact hammer in deep hard rock mines.Before the field application,the scope of the excavation damage zone was monitored,and rock samples were obtained from the ore body to be mined to carry out a series of laboratory experiments.Field application results show that the overall excavation efficiency reaches 50.6 t/h,and the efficiency of pillar excavation after excavating stress relief slot reaches 158.2 t/h.The results indicate that the non-blasting mechanized mining using high-frequency impact hammer has a good application in deep hard rock mines,and the stress relief slot is conducive to mechanical excavation.In addition,the high-frequency impact hammer also exhibits the advantages of high utilization rate of labor hours,small lumpiness of spalling ore,little dust,and little excavation damage.Finally,according to the field application and laboratory experiment results,a non-blasting mechanized mining method for hard rock mines based on high-frequency impact hammer is proposed.
基金jointly supported by the State Key Research Development Program of China (Grant No.2016YFC0600706)the National Natural Science Foundation of China (Grant Nos.41630642 and 11472311)
文摘Rock failure phenomena,such as rockburst,slabbing(or spalling) and zonal disintegration,related to deep underground excavation of hard rocks are frequently reported and pose a great threat to deep mining.Currently,the explanation for these failure phenomena using existing dynamic or static rock mechanics theory is not straightforward.In this study,new theory and testing method for deep underground rock mass under coupled static-dynamic loading are introduced.Two types of coupled loading modes,i.e.'critical static stress + slight disturbance' and 'elastic static stress + impact disturbance',are proposed,and associated test devices are developed.Rockburst phenomena of hard rocks under coupled static-dynamic loading are successfully reproduced in the laboratory,and the rockburst mechanism and related criteria are demonstrated.The results of true triaxial unloading compression tests on granite and red sandstone indicate that the unloading can induce slabbing when the confining pressure exceeds a certain threshold,and the slabbing failure strength is lower than the shear failure strength according to the conventional Mohr-Column criterion.Numerical results indicate that the rock unloading failure response under different in situ stresses and unloading rates can be characterized by an equivalent strain energy density.In addition,we present a new microseismic source location method without premeasuring the sound wave velocity in rock mass,which can efficiently and accurately locate the rock failure in hard rock mines.Also,a new idea for deep hard rock mining using a non-explosive continuous mining method is briefly introduced.
文摘This paper describes the state-of-the-art and Outlook of coal mining and clean coal technology in China. As the major mining method,underground mining accounts for 96% of the total production. Among the state own mines, the percentage of mechanized mining reached 71 %. A rapid development of high-productive and high-profitable mines,especially those with longwall sublevel caving method, is described. The issues of heavy duty equipment, roof bolting,mine safety are also addressed. The Chinese government is paying more and more attention on the environmental problems inducing from coal mining,processing and utilization. A basic framework of clean coal technology is being formed and a wide range of technology is included.
文摘针对在越江海高水压水下超大直径盾构隧道联络通道施工过程中缺乏足够的工程技术标准和案例经验、设计与施工面临众多挑战问题,以广州海珠湾超大直径盾构隧道区间的6条联络通道工程为例,对工程地质补勘资料及现场施工情况进行分析,揭示原矿山法设计施工方案存在的不足,并基于此提出“矿山法结合地层冻结加固方案”和“机械顶管法施工方案”2种优化方案;随后在安全性、经济性、施工工期等方面对不同工法进行综合优选分析,同时引入碳排放指标进行绿色低碳评估。研究结果表明:1)机械顶管法在安全性和施工效率上优于其他方案,能够显著缩短施工周期;2)相比矿山法结合地层冻结加固方案,机械顶管法方案碳排放量减少了2 747.51 t CO_(2e)。