The numerical simulation for mold-filling of thin-walled aluminum alloy castings in horizontal traveling magnetic field is performed. A force model of Al alloy melt in the traveling magnetic field is founded by analyz...The numerical simulation for mold-filling of thin-walled aluminum alloy castings in horizontal traveling magnetic field is performed. A force model of Al alloy melt in the traveling magnetic field is founded by analyzing traveling magnetic field carefully. Numerical model of Al alloy mold-filling is founded based on N-S equation, which was suitable for traveling magnetic field. By using acryl glass mold with indium as alloy melt, the experiment testified the filling state of alloy in traveling magnetic field. The results of numerical simulation indicate that the mold-filling ability of gallium melt increases continually with the increase of the input ampere turns.展开更多
In this study, the relationship between skin structure and shear strength distribution of thin-wall injection molded polypropylene (PP) molded at different molecular weight and molecular distribution was investigated....In this study, the relationship between skin structure and shear strength distribution of thin-wall injection molded polypropylene (PP) molded at different molecular weight and molecular distribution was investigated. Skin-core structure, cross-sectional morphology, crystallinity, crystal orientation, crystal morphology and molecular orientation were evaluated by using polarized optical microscope, differential scanning calorimeter, X-ray spectroscopic analyzer and laser Raman spectroscopy, respectively, while the shear strength distribution was investigated using a micro cutting method called SAICAS (Surface And Interfacial Cutting Analysis System). The results indicated that the difference of molecular weight and molecular weight distribution showed own skin layer thickness. Especially, high molecular weight sample showed thicker layer of the lamellar orientation and molecular orientation than low molecular weight sample. In addition, wide molecular distribution sample showed large crystal orientation layer.展开更多
Thin-wall injection molded parts have been paid much attention to the lightweight saving from viewpoints of natural resources saving. In the injection molding, skin-core structure can be found in the parts. This skin-...Thin-wall injection molded parts have been paid much attention to the lightweight saving from viewpoints of natural resources saving. In the injection molding, skin-core structure can be found in the parts. This skin-core structure affects the property of completed injection molding parts (bulk property) even if in thin-wall injection molding. However, there is a few research about the relationship between bulk property and internal property distribution in the injection molding specimen. In this study, thin-wall injection molded parts of polypropylene (PP) were prepared by 4 different molecular weight and molecular weight distribution to reveal the relationship between bulk property and property distribution. These characteristics were investigated by using tensile test, fracture toughness characterized by Essential Work of Fracture (EWF) method for bulk property and film tensile test by sliced sample for tensile property distribution. The property distribution test results revealed that the highly bulk property sample had thicker highly mechanical property layer on its surface.展开更多
文摘The numerical simulation for mold-filling of thin-walled aluminum alloy castings in horizontal traveling magnetic field is performed. A force model of Al alloy melt in the traveling magnetic field is founded by analyzing traveling magnetic field carefully. Numerical model of Al alloy mold-filling is founded based on N-S equation, which was suitable for traveling magnetic field. By using acryl glass mold with indium as alloy melt, the experiment testified the filling state of alloy in traveling magnetic field. The results of numerical simulation indicate that the mold-filling ability of gallium melt increases continually with the increase of the input ampere turns.
文摘In this study, the relationship between skin structure and shear strength distribution of thin-wall injection molded polypropylene (PP) molded at different molecular weight and molecular distribution was investigated. Skin-core structure, cross-sectional morphology, crystallinity, crystal orientation, crystal morphology and molecular orientation were evaluated by using polarized optical microscope, differential scanning calorimeter, X-ray spectroscopic analyzer and laser Raman spectroscopy, respectively, while the shear strength distribution was investigated using a micro cutting method called SAICAS (Surface And Interfacial Cutting Analysis System). The results indicated that the difference of molecular weight and molecular weight distribution showed own skin layer thickness. Especially, high molecular weight sample showed thicker layer of the lamellar orientation and molecular orientation than low molecular weight sample. In addition, wide molecular distribution sample showed large crystal orientation layer.
文摘Thin-wall injection molded parts have been paid much attention to the lightweight saving from viewpoints of natural resources saving. In the injection molding, skin-core structure can be found in the parts. This skin-core structure affects the property of completed injection molding parts (bulk property) even if in thin-wall injection molding. However, there is a few research about the relationship between bulk property and internal property distribution in the injection molding specimen. In this study, thin-wall injection molded parts of polypropylene (PP) were prepared by 4 different molecular weight and molecular weight distribution to reveal the relationship between bulk property and property distribution. These characteristics were investigated by using tensile test, fracture toughness characterized by Essential Work of Fracture (EWF) method for bulk property and film tensile test by sliced sample for tensile property distribution. The property distribution test results revealed that the highly bulk property sample had thicker highly mechanical property layer on its surface.