Based on the 2nd order cnoidal wave theory, the characters of shallow water standing waves and their action on vertical walls are studied in this paper. The theoretical expressions of the wave surface elevation in fro...Based on the 2nd order cnoidal wave theory, the characters of shallow water standing waves and their action on vertical walls are studied in this paper. The theoretical expressions of the wave surface elevation in front of and the wave pressure on the vertical wall are obtained. In order to verify the theoretical results, model tests were made in the State Key Laboratory of Coastal and Offshore Engineering at DUT. For the wave surface elevation in front of the wall and the wave forces on the wall at the moment when the wave surface at the wall surface goes down to the bottom of the wave trough, the calculated results coincide quite well with the experimental results. For the wave forces on the wall at the moment when the wave surface at the wall surface goes up to the top of the wave crest, the theoretical expressions are modified by the experimental results. For the convenience of practical use, calculations are made for the wave conditions which usually occur in enginering practice by use of the investigated results obtained in this paper. Empirical formulas are fitted with these calculated results for designers to use.展开更多
When a 2-D progressive wave train normally or obliquely approaches a vertical wall and then is normally or obliquely reflected from it, the combination of the approaching and reflected waves may result in a standing w...When a 2-D progressive wave train normally or obliquely approaches a vertical wall and then is normally or obliquely reflected from it, the combination of the approaching and reflected waves may result in a standing wave or a short-crested wave in front of the wall. This paper presents the experimental observations of sand bed configurations under the action of these water waves in front of the wall. The geometry of sand ripples under these water waves in front of the vertical wall is presented as a function of flow parameters, such as the water particle semi-excursion and the mobility number.展开更多
文摘Based on the 2nd order cnoidal wave theory, the characters of shallow water standing waves and their action on vertical walls are studied in this paper. The theoretical expressions of the wave surface elevation in front of and the wave pressure on the vertical wall are obtained. In order to verify the theoretical results, model tests were made in the State Key Laboratory of Coastal and Offshore Engineering at DUT. For the wave surface elevation in front of the wall and the wave forces on the wall at the moment when the wave surface at the wall surface goes down to the bottom of the wave trough, the calculated results coincide quite well with the experimental results. For the wave forces on the wall at the moment when the wave surface at the wall surface goes up to the top of the wave crest, the theoretical expressions are modified by the experimental results. For the convenience of practical use, calculations are made for the wave conditions which usually occur in enginering practice by use of the investigated results obtained in this paper. Empirical formulas are fitted with these calculated results for designers to use.
文摘When a 2-D progressive wave train normally or obliquely approaches a vertical wall and then is normally or obliquely reflected from it, the combination of the approaching and reflected waves may result in a standing wave or a short-crested wave in front of the wall. This paper presents the experimental observations of sand bed configurations under the action of these water waves in front of the wall. The geometry of sand ripples under these water waves in front of the vertical wall is presented as a function of flow parameters, such as the water particle semi-excursion and the mobility number.