期刊文献+
共找到951篇文章
< 1 2 48 >
每页显示 20 50 100
Mathematical Modelling of Operating Temperature Variations of Shell-and-Tube Heat Exchanger (10-E-01)
1
作者 Romokere Isotuk Uzono Ojong Elias Ojong 《World Journal of Engineering and Technology》 2022年第2期422-433,共12页
The technique of modeling operating temperature variations of shell-and-tube heat exchanger 10-E-01 of kerosene-crude oil streams of Port Harcourt refinery crude distillation unit is presented in this research. A... The technique of modeling operating temperature variations of shell-and-tube heat exchanger 10-E-01 of kerosene-crude oil streams of Port Harcourt refinery crude distillation unit is presented in this research. Appropriate first-order model equations were developed applying principles of energy balance. The differential equations developed for the process streams which exchanged heat was evaluated numerically to predict the temperature variations as a function of time. The relevant parameters associated with typical heat exchanger works were calculated using plant data of 10-E-02. The model strives to predict the final kerosene temperature from 488 to 353.6 K. While the crude oil streams temperature rose from 313 to 353.6 K. The developed model enables the operator to predict the final temperature at the kerosene hydro-treating unit and thereby prevent regular emergency shutdowns due to excessive temperature rise. 展开更多
关键词 shell-and-Tube heat exchanger 10-E-01 MODELING Kerosene-Crude Streams Differential Equations
下载PDF
Efficiency and Effectiveness Concepts Applied in Shell and Tube Heat Exchanger Using Ethylene Glycol-Water Based Fluid in the Shell with Nanoparticles of Copper Oxide (CuO) 被引量:2
2
作者 Élcio Nogueira 《Journal of Materials Science and Chemical Engineering》 2020年第8期1-12,共12页
This article consists of an analytical solution for obtaining the outlet temperatures of the hot and cold fluids in a shell and tube heat exchanger. The system analyzed through the concepts of efficiency, effectivenes... This article consists of an analytical solution for obtaining the outlet temperatures of the hot and cold fluids in a shell and tube heat exchanger. The system analyzed through the concepts of efficiency, effectiveness (<em>ε</em>-<em>NTU</em>), and irreversibility consisted of a shell and tube heat exchanger, with cold nanofluid flowing in the shell and hot water flowing in the tube. The nanofluid consists of 50% of ethylene glycol and water as the base fluid and copper oxide (CuO) nanoparticles in suspension. The volume fractions of the nanoparticles range from 0.1 to 0.5. The flow rate in the nanofluid ranges from 0.0331 to 0.0568 Kg/s, while two mass flow rates, from 0.0568 and 0.5 Kg/s, for the hot fluid, are used as parameters for analysis. Results for the efficiency, effectiveness, irreversibility, heat transfer rate, and outlet temperatures for cold and hot fluids were obtained graphically. The flow laminarization effect was observed through the results obtained and had significant relevance in the results. 展开更多
关键词 EFFICIENCY EFFECTIVENESS shell and Tube heat exchanger NANofLUID Ethylene Glycol
下载PDF
Efficiency and Effectiveness Thermal Analysis of the Shell and Helical Coil Tube Heat Exchanger Used in an Aqueous Solution of Ammonium Nitrate Solubility (<i>ANSOL</i>) with 20% H<sub>2</sub>O and 80% <i>AN</i> 被引量:1
3
作者 Élcio Nogueira 《Journal of Materials Science and Chemical Engineering》 2021年第6期24-45,共22页
The case study is about obtaining the flow rate and saturation temperature of steam that makes it possible to heat a solution of water and ammonia nitrate (<i>ANSOL</i>) in a shell and helical coil tube he... The case study is about obtaining the flow rate and saturation temperature of steam that makes it possible to heat a solution of water and ammonia nitrate (<i>ANSOL</i>) in a shell and helical coil tube heat exchanger, within a time interval, without that the crystallization of the <i>ANSOL</i> solution occurs. The desired production per batch of the solution is 5750 kg in 80 minutes. The analysis uses the concepts of efficiency and effectiveness to determine the heat transfer rate and temperature profiles that satisfy the imposed condition within a certain degree of safety and with the lowest possible cost in steam generation. Intermediate quantities necessary to reach the objective are the Reynolds number, Nusselt number, and global heat transfer coefficient for the shell and helical coil tube heat exchanger. Initially, the water is heated for a specified period and, subsequently, the ammonium nitrate is added to a given flow in a fixed mass flow rate. 展开更多
关键词 Thermal Efficiency Thermal Effectiveness shell and Helical Coil Tube heat exchanger Ammonium Nitrate
下载PDF
Design of Portable Shell and Tube Heat Exchanger for a Solar Powered Water Distiller
4
作者 A. Khiabani N.M. Adam +1 位作者 T.S. Hong M. Ali 《Journal of Energy and Power Engineering》 2011年第7期612-619,共8页
关键词 换热器设计 蒸馏水 太阳能 管壳式 便携式 冷却水温度 蒸汽温度 涂料生产
下载PDF
Development and Experimental Study on Heat Exchanger with High Efficiency of Mining Machinery
5
作者 周明连 许淑惠 葛振玉 《International Journal of Mining Science and Technology》 SCIE EI 1999年第2期152-155,共4页
The flow patterns, pressure drop, and heat transfer characteristics of shell and tube heat exchangers with different shell side structure were studied systematically by experiments. Experiments show that the optimal a... The flow patterns, pressure drop, and heat transfer characteristics of shell and tube heat exchangers with different shell side structure were studied systematically by experiments. Experiments show that the optimal angle of helical baffle is 40°, and the optical porosity of porous media is 0. 985. Based on this, a new oil cooler was developed for hydraulic system of mining machinery, and its heat trausfer coefficient is higher than that of the existing oil coolers. 展开更多
关键词 shell and TUBE heat exchangeR flow heat TRANSFER augmentation
下载PDF
Theoretical Analysis of a Shell and Tubes Condenser with R134a Working Refrigerant and Water-Based Oxide of Aluminum Nanofluid (Al<sub>2</sub>O<sub>3</sub>)
6
作者 Élcio Nogueira 《Journal of Materials Science and Chemical Engineering》 2020年第11期1-22,共22页
The article analyzes a shell and tube type condenser’s thermal performance using concepts of efficiency and effectiveness. Freon 134a is used as a coolant flowing through the shell. Water or water-based aluminum oxid... The article analyzes a shell and tube type condenser’s thermal performance using concepts of efficiency and effectiveness. Freon 134a is used as a coolant flowing through the shell. Water or water-based aluminum oxide nanoparticles are at relatively low saturation pressure in the tube. The condenser consists of 36 tubes divided into three central regions for analysis: superheated steam, saturated steam, and subcooled liquid. The three regions contain four tubes with three steps each, that is, 12 tubes. Region I, superheated steam, includes three horizontal baffles. Profiles of temperature, efficiency, and effectiveness are presented graphically for the three regions, with fixed refrigerant flow equal to 0.20 kg/s and fluid flow rate in the tube ranging from 0.05 kg/s to 0.40 kg/s. The experimental result for vapor pressure equal to 1.2 MPa and water flow equal to 0.41 kg/s was used as one of the references for the model’s physical compatibility. 展开更多
关键词 heat exchanger CONDENSER shell and tubes Freon 134a NANofLUID
下载PDF
Optimal design of heat exchanger header for coal gasification in supercritical water through CFD simulations 被引量:1
7
作者 Lei Huang Lin Qi +2 位作者 Hongna Wang Jinli Zhang Xiaoqiang Jia 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第8期1101-1108,共8页
Heat exchangers play an important role in supercritical water coal gasification systems for heating feed and cooling products.However,serious deposition and plugging problems always exist in heat exchangers.CFD modeli... Heat exchangers play an important role in supercritical water coal gasification systems for heating feed and cooling products.However,serious deposition and plugging problems always exist in heat exchangers.CFD modeling was used to simulate the transport characteristics of solid particles in supercritical water through the shell and tube of heat exchangers to alleviate the problems.In this paper,we discuss seven types of exchangers(A,B,C,D,E,F and G),which vary in inlet nozzle configuration,header height,inlet pipe diameter and tube pass distribution.In the modeling,the possibility of deposition in the header was evaluated by accumulated mass of particles;we used the velocity contour of supercritical water(SCW)to evaluate the uniformity of the velocity distribution among the tube passes.Simulation results indicated that the optimum heat exchanger had structure F,which had a rectangular configuration of tube pass distractions,a bottom inlet,a 200-mm header height and a 10-mm inlet pipe diameter. 展开更多
关键词 CFD模拟 超临界水 换热器 优化设计 VELOCITY 煤气化 CONTOUR 封头
下载PDF
Performance Assessment of Heat Exchangers for Process Heat Integration
8
作者 Fenwicks Shombe Musonye Hiram Ndiritu Robert Kinyua 《Energy Engineering》 EI 2021年第2期211-224,共14页
Pinch Analysis is an attractive solution for reduction of thermal energy costs in thermo-chemical industries.In this approach,maximum internally recoverable heat is determined and a heat exchange network is designed t... Pinch Analysis is an attractive solution for reduction of thermal energy costs in thermo-chemical industries.In this approach,maximum internally recoverable heat is determined and a heat exchange network is designed to meet the recovery targets.The thermal performance of a heat exchanger over its lifetime is however a concern to industries.Thermal performance of a heat exchanger is affected by many factors which include the physical prop-erties of the shell and tube materials,and the chemical properties of the heat transferfluid.In this study,thermal performance of shell and tube heat exchangers designed to meet heat recovery targets in a Pinch Analysis study is simulated.The aim of this paper is to present predictions of thermal performances of shell and tube heat exchan-gers with different heat transferfluids and geometries as they undergo fouling degradation.Engineering approaches based on thermodynamic analysis,heat balance and Kern Design equations,as well as what-if simu-lation modeling are used in this work.Shell and tube heat exchangers were designed to meet internal heat recov-ery targets for three process plants,A,B and C.These targets were published in a separate paper.The effects of degradation of the tubes-due to incremental growth of fouling resistance-on thermal performance of the exchan-ger were simulated using Visual Basic Analysis(VBA).Overall,it was found that growth in fouling reduces ther-mal efficiency of shell and tube heat exchangers with an exponential relationship.An increase of 100%of fouling resistance leads to an average reduction of 0.37%heat transfer.Higher values of logarithmic mean temperature difference(LMTD)and higher ratios of external diameter to internal diameter of the exchanger tubes amplify the effect of fouling growth on thermal performance of the exchangers.The results of this work can be applied in pinch analysis,during design of heat exchangers to meet the internal heat recovery targets,especially in predicting how fouling growth can affect these targets.This can also be useful in helping operators of shell and tube heat exchangers to determine cleaning intervals of the exchangers to avoid heat transfer loss. 展开更多
关键词 Pinch analysis internal heat recovery thermal performance fouling resistance fouling growth what if simulation shell and tube heat exchangers
下载PDF
On-Line Life Monitoring Technique for Tube Bundles of Boiler High-Temperature Heating Surface
9
作者 YangDong WangZhongyuan 《Electricity》 2005年第1期12-16,共5页
High-temperature heating surface such as superheater and reheater of large-sized utility boiler all experiences a relatively severe working conditions. The failure of boiler tubes will directly impact the safe and eco... High-temperature heating surface such as superheater and reheater of large-sized utility boiler all experiences a relatively severe working conditions. The failure of boiler tubes will directly impact the safe and economic operation of boiler. An on-line life monitoring model of high-temperature heating surface was set up according to the well-known L-M formula of the creep damages. The tube wall metal temperature and working stress was measured by on-line monitoring, and with this model, the real-time calculation of the life expenditure of the heating surface tube bundles were realized. Based on the technique the on-line life monitoring and management system of high-temperature heating surface was developed for a 300 MW utility boiler. An effective device was thus suggested for the implementation of the safe operation and the condition-based maintenance of utility boilers. 展开更多
关键词 电站锅炉 高温热处理 管束 在线监测 生命评估
下载PDF
Numerical simulation and optimization design of the EGR cooler in vehicle 被引量:3
10
作者 Yu-qi HUANG Xiao-li YU Guo-dong LU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第9期1270-1276,共7页
The EGR (exhaust gas recirculation) technique can greatly reduce the NOx emission of diesel engines, especially when an EGR cooler is employed. Numerical simulations are applied to study the flow field and temperature... The EGR (exhaust gas recirculation) technique can greatly reduce the NOx emission of diesel engines, especially when an EGR cooler is employed. Numerical simulations are applied to study the flow field and temperature distributions inside the EGR cooler. Three different models of EGR cooler are investigated, among which model A is a traditional one, and models B and C are improved by adding a helical baffle in the cooling area. In models B and C the entry directions of cooling water are different, which mostly influences the flow resistance. The results show that the improved structures not only lengthen the flow path of the cooling water, but also enhance the heat exchange rate between the cool and hot media. In conclusion we suggest that the improved structures are more powerful than the traditional one. 展开更多
关键词 湍流 散热器 再循环技术 流体动力学
下载PDF
STUDY ON LOCATION OF HOT SPOT AT TUBE WALL FOR FIRED CYLINDRICAL FURNACE COMBUSTION
11
作者 WangTaiyong LuShizhong XüZhixue 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第2期170-172,176,共4页
Based on the analysis of heat radiation intensity from flame, a new mathematical model ofthe tube-wall temperatmp of heated tubes is developed by taking down-fired, upright-tube cylindricalfurnace for example. The pro... Based on the analysis of heat radiation intensity from flame, a new mathematical model ofthe tube-wall temperatmp of heated tubes is developed by taking down-fired, upright-tube cylindricalfurnace for example. The proposed mathematical model can be employed to indicate both the positionand size of the hot spot at fire-facing wall of heated tube of combustion chamber, and is characteristicof simplicity and efficiency If coupled with thermoelectric couple or infrared viewer, the presentedlocation method of combustion hot spot can offer engineers very valuable proposal to keep furnacerunning more safely The same is true for any other type of tubular furnaces. 展开更多
关键词 Cylindrical fumace COMBUSTION heat radiation intensity Tube-wall temperature Hot spot
下载PDF
Enhancing Heat Transfer and Energy Storage Performance of Shell-and-Tube Latent Heat Thermal Energy Storage Unit with Unequal-Length Fins
12
作者 WU Yangyang LI Dong +2 位作者 YANG Ruitong MÜSLÜM Arıcı LIU Changyu 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第6期2018-2031,共14页
Previous studies in literatures adequately emphasized that inserting fins into phase change material is among the most promising techniques to augment thermal performance of shell-and-tube latent heat thermal energy s... Previous studies in literatures adequately emphasized that inserting fins into phase change material is among the most promising techniques to augment thermal performance of shell-and-tube latent heat thermal energy storage unit.In this study,the novel unequal-length fins are designed from the perspective of synergistic benefits of heat transfer and energy storage performance,and the effects of arrangement,number and total length of unequal-length fins are numerically investigated.Results show that utilization of fins with ascending length,when short and long fins are located in the inlet and outlet of heat transfer fluid respectively,can further promote the heat transfer and energy storage performance compared with equal length fins,and a maximum 6.17%and 0.43%increment of heat transfer performance and stored energy is achieved in full melting time,respectively.The number of unequal-length fins plays a major role in the energy storage,and 18.95%and 0.91%improvement of heat transfer performance and stored energy is realized when equipped with 2 unequal-length fins.A 21.17%improvement of the heat transfer performance is obtained when the total length of unequal-length fins is 18 mm.The present study is helpful to make further efforts to enhance heat transfer and energy storage of shell-and-tube latent heat thermal energy storage unit with unequal-length fins. 展开更多
关键词 unequal-length fin enhanced heat transfer energy storage shell and tube heat exchanger PCM
原文传递
EXPERIMENTAL AND NUMERICAL ANALYSIS OF LAMINAR AND LOW TURBULENT FLOW DISTRIBUTIONS IN INLET DIVIDING HEADER OF SHELL AND TUBE HEAT EXCHANGER 被引量:6
13
作者 KANNAN K. RUDRAMOORTHY R. 《Journal of Hydrodynamics》 SCIE EI CSCD 2010年第4期494-502,共9页
Flow distribution headers play a major role in heat exchangers.The selection of header diameter,branch pipe diameter,branch pipe spacing etc.is based on the designer's experience and general guide lines.The proper se... Flow distribution headers play a major role in heat exchangers.The selection of header diameter,branch pipe diameter,branch pipe spacing etc.is based on the designer's experience and general guide lines.The proper selection of the header dimensions will yield uniform flow distribution in heat exchangers,which in turn will enhance the heat exchanger efficiency.In this work,the flow distribution in branch pipes and the pressure variation across the branch pipes in laminar and low turbulence region is studied with two models of the inlet dividing headers.When the numerical analysis has been applied,its inability to predict the no flow condition through the branch pipes is revealed.The results are presented in the form of flow rate ratio through branch pipes and nondimensional coefficients across branch pipes which are useful to apply the existing mathematical models for the present experimental setup. 展开更多
关键词 shell and tube heat exchanger inlet dividing header uniform flow distribution experimental setups numerical analysis
原文传递
Flow mechanism and heat transfer enhancement in longitudinal-flow tube bundle of shell-and-tube heat exchanger 被引量:18
14
作者 Wei Liu ZhiChun Liu +1 位作者 YingShuang Wang SuYi Huang 《Science China(Technological Sciences)》 SCIE EI CAS 2009年第10期2952-2959,共8页
The flow disturbance and heat transfer mechanism in the tube bundle of rod baffle shell-and-tube heat exchanger were analyzed, on the basis of which and combined with the concept of heat transfer enhancement in the co... The flow disturbance and heat transfer mechanism in the tube bundle of rod baffle shell-and-tube heat exchanger were analyzed, on the basis of which and combined with the concept of heat transfer enhancement in the core flow, a new type of shell-and-tube heat exchanger with combination of rod and van type spoiler was designed. Corresponding mathematical and physical models on the shell side about the new type heat exchanger were established, and fluid flow and heat transfer characteristics were numerically analyzed. The simulation results showed that heat transfer coefficient of the new type of heat exchanger approximated to that of rod baffle heat exchanger, but flow pressure drop was much less than the latter, indicating that comprehensive performance of the former is superior to that of the latter. Compared with rod baffle heat exchanger, heat transfer coefficient of the heat exchanger under investigation is higher under same pressure drop, especially under the high Reynolds numbers. 展开更多
关键词 shell-and-tube heat exchanger tube BUNDLE rod BAFFLE vane-type SPOILER core FLOW heat transfer enhancement
原文传递
Numerical Simulation on Flow and Heat Transfer at Shell-Side of Flat-Tube Heat Exchangers 被引量:7
15
作者 YANG Xia ZHANG Jie +3 位作者 YU Jiuyang WU Yanyang LUO Yan GUO Jia 《Wuhan University Journal of Natural Sciences》 CAS 2010年第5期427-432,共6页
The fluid flow and heat transfer of the shell-side in one type of flat-tube heat exchangers(FHE) were studied through numerical simulation and experimental methods.In the numerical simulation,hot/cold air was set as... The fluid flow and heat transfer of the shell-side in one type of flat-tube heat exchangers(FHE) were studied through numerical simulation and experimental methods.In the numerical simulation,hot/cold air was set as working fluid,and the standard k-ε turbulence model supplemented by boundary conditions was used,and also the control volume method was used to the discrete control equations.Compared with the same type of circular-tube heat exchangers(CHE),the numerical simulation results show that the pressure drop at the shell-side of FHE decreases by 12%-20%,and heat transfer coefficient increases by about 24%.The coefficient of integral performance Nu/ζ 0.29 has an increment of 22%-34%.Under the same conditions,the experimental results of temperature and the overall pressure drop show that the deviation percentage with those of numerical simulation are less than 8% and 25%,respectively.Both results verify that the heat transfer efficiency and flow resistance characteristics of FHEs are superior to that of CHEs. 展开更多
关键词 flat-tube heat exchanger shell-side flow and heat tranfer k-ε turbulence model feature of flow resistance
原文传递
Velocity Profiles between Two Baffles in a Shell and Tube Heat Exchanger 被引量:2
16
作者 Tae-Hyun Chang Chang-Hoan Lee +1 位作者 Hae-Soo Lee Kwon-Soo Lee 《Journal of Thermal Science》 SCIE EI CAS CSCD 2015年第4期356-363,共8页
Heat exchangers are extensively utilized for waste heat recovery,oil refining,chemical processing,and steam generation.In this study,velocity profiles are measured using a 3D particle image velocimetry(PIV)system betw... Heat exchangers are extensively utilized for waste heat recovery,oil refining,chemical processing,and steam generation.In this study,velocity profiles are measured using a 3D particle image velocimetry(PIV)system between two baffles in a shell and tube heat exchanger for parallel and counter flows.The PIV and computational fluid dynamics results show the occurrence of some strong vectors near the bottom.These vectors are assumed due to the clearance between the inner tubes and the front baffle.Therefore,the major parts of the vectors are moved out through the bottom opening of the rear baffle,and other vectors produce a large circle between the two baffles.Numerical simulations are conducted to investigate the effects of the baffle on the heat exchanger using the Fluent software.The k-εturbulence model is employed to calculate the flows along the heat exchanger. 展开更多
关键词 管壳式换热器 速度分布 计算流体动力学 FLUENT软件 隔板 粒子图像测速 管式换热器 余热回收
原文传递
Characteristics of Fluid Flow and Heat Transfer in the Shell Side of the Trapezoidal-like Tilted Baffles Heat Exchanger 被引量:2
17
作者 GU Xin ZHENG Zhiyang +3 位作者 XIONG Xiaochao WANG Tongtong LUO Yuankun WANG Ke 《Journal of Thermal Science》 SCIE EI CAS CSCD 2018年第6期602-610,共9页
Periodic whole cross-section computation models are established for segmental baffle heat exchanger, shutter baffle heat exchanger, and trapezoid-like tilted baffle heat exchanger. The reliability of models is verifie... Periodic whole cross-section computation models are established for segmental baffle heat exchanger, shutter baffle heat exchanger, and trapezoid-like tilted baffle heat exchanger. The reliability of models is verified by comparing the simulated results to the results obtained from the Bell-Delaware method. Due to the orthogonal assembly of the baffles, the shell side fluid shows the twisty flow of trapezoid-like tilted baffle heat exchanger. The essential mechanism on disturbing flow and heat transfer enhancement is revealed by defining the non-dimensional factor η of the shell side fluid flow direction of heat exchanger and the field synergy principle. The results show that at the same Reynolds number, the shell side fluid convection heat transfer coefficient of trapezoid-like tilted baffle heat exchanger is 12.43%-24.33% and 6.71%-11.51% higher than those of segmental baffle heat exchanger and shutter baffle heat exchanger, respectively. The shell side fluid flow velocity field and the pressure gradient field of trapezoid-like tilted baffle heat exchanger and shutter baffle heat exchanger decreases compared with that of segmental baffle heat exchanger, so the shell side fluid flow resistance and pressure drop is increased; the shell side comprehensive performance of trapezoid-like tilted baffle heat exchanger is 5.85%-9.06% higher than that of segmental baffle heat exchanger, and 15.27%-23.28% higher than that of shutter baffle heat exchanger. In this study, a baffle structure with higher efficiency of the energy utilization for the heat exchanger is provided. 展开更多
关键词 液体流动 热转移 特征 计算模型 流动方向 协同作用 数字显示 转移系数
原文传递
Prediction of Heat Transfer Rates for Shell-and-Tube Heat Exchangers by Artificial Neural Networks Approach 被引量:1
18
作者 Qiuwang WANG Gongnan XIE Ming ZENG Laiqin LUO 《Journal of Thermal Science》 SCIE EI CAS CSCD 2006年第3期257-262,共6页
This work used artificial neural network(ANN)to predict the heat transfer rates of shell-and-tube heatexchangers with segmental baffles or continuous helical baffles,based on limited experimental data.The BackPropagat... This work used artificial neural network(ANN)to predict the heat transfer rates of shell-and-tube heatexchangers with segmental baffles or continuous helical baffles,based on limited experimental data.The BackPropagation (BP) algorithm was used in training the networks.Different network configurations were alsostudied.The deviation between the predicted results and experimental data was less than 2%.Comparison withcorrelation for prediction shows ANN superiority.It is recommended that ANN can be easily used to predict theperformances of thermal systems in engineering applications,especially to model heat exchangers for heattransfer analysis. 展开更多
关键词 热传递率 人工神经网络 壳管热交换机 向后传播
原文传递
不同螺旋缠绕异形管换热器壳程性能数值研究
19
作者 叶金波 武祥 +1 位作者 张强 宋克伟 《兰州交通大学学报》 CAS 2024年第3期68-77,85,共11页
缠绕管的形状对螺旋缠绕管换热器的传热能力有重要影响,本文建立了具有不同截面形状的螺旋缠绕管换热器模型,数值研究了八种不同截面形状的缠绕管对螺旋缠绕管换热器壳程流动与传热性能的影响。相比于传统圆管,三叶管和水滴管对壳程流... 缠绕管的形状对螺旋缠绕管换热器的传热能力有重要影响,本文建立了具有不同截面形状的螺旋缠绕管换热器模型,数值研究了八种不同截面形状的缠绕管对螺旋缠绕管换热器壳程流动与传热性能的影响。相比于传统圆管,三叶管和水滴管对壳程流体造成的扰动较大,增强了螺旋缠绕管换热器的综合换热性能,而三叶管则具有最大换热能力。进一步分析了不同冲刷方式对螺旋三叶管换热器和螺旋水滴管换热器壳程性能的影响,结果表明:在相同的进口工况下,螺旋三叶管换热器壳程努塞尔数相比于传统圆管提高了11.8%~15.5%,阻力系数增大了41.9%~49.6%;螺旋水滴管换热器壳程努塞尔数相比于传统圆管提高了2.8%~4.3%,阻力系数增大了3.2%~6.8%;在雷诺数为2 603~5 206的工况条件下,管截面与流动方向夹角为0°的三叶管换热器综合换热性能最好,而管截面与流动方向呈逆流形式的水滴管换热器综合换热性能优于顺流形式。 展开更多
关键词 螺旋缠绕管 绕管式换热器 异形管 壳程 传热性能
下载PDF
管壳式换热器弓形折流板的结构优化
20
作者 吕林 虞斌 +1 位作者 王风录 江超 《化工机械》 CAS 2024年第3期368-374,共7页
为研究某高温烟气急冷器空气二次冷却系统的流动与传热特性,建立了管壳式换热器简化模型,运用ANSYS软件进行数值模拟,分析了折流板数量、相对缺口高度、折流板间距和换热器进出口管布置方式对换热器性能的影响。结果表明:折流板数量越多... 为研究某高温烟气急冷器空气二次冷却系统的流动与传热特性,建立了管壳式换热器简化模型,运用ANSYS软件进行数值模拟,分析了折流板数量、相对缺口高度、折流板间距和换热器进出口管布置方式对换热器性能的影响。结果表明:折流板数量越多,相对缺口高度越小,换热器压降越大,换热系数越大,综合性能指标越小;高温区域折流板间距小、低温区域折流板间距大的换热器比等间距折流板换热器平均换热系数提高了4.3%,平均综合性能指标提高了2.3%;空气出口管布置在热流体进口侧比布置在热流体出口侧平均换热系数提高了6.5%,平均综合性能指标提高了4.3%。 展开更多
关键词 弓形折流板 管壳式换热器 综合性能指标 结构优化 ANSYS
下载PDF
上一页 1 2 48 下一页 到第
使用帮助 返回顶部