In ultra-wideband through-wall-imaging applications, wall clutters are always much stronger than the target reflections, and they tend to persist over a long period of time. As a result, targets are obscured and not v...In ultra-wideband through-wall-imaging applications, wall clutters are always much stronger than the target reflections, and they tend to persist over a long period of time. As a result, targets are obscured and not visible in the image. In this work, an antenna planes-based wall clutter mitigation method was proposed. By using two imaging procedures in different scanning planes, this method can mitigate the wall clutter in both SAR and MIMO modes. The proposed method was tested using EM numerical data via the FDTD method. The processing results show that the imaging quality is improved significantly.展开更多
Sliding wall-climbing robot (SWCR) is applied worldwide for its continuous motion, however, considerable air leakage causes two problems: great power consumption and big noise, and they constraint the robot's comp...Sliding wall-climbing robot (SWCR) is applied worldwide for its continuous motion, however, considerable air leakage causes two problems: great power consumption and big noise, and they constraint the robot's comprehensive performance. So far, effective theoretical model is still lacked to solve the problems. The concept of SWCR's adsorption performance is presented, and the techniques of improving utilization rate of given adsorption force and utilization rate of power are studied respectively to improve SWCR's adsorption performance. The effect of locomotion mechanism selection and seal's pressure allocation upon utilization rate of given adsorption force is discussed, and the theoretical way for relevant parameters optimization are provided. The directions for improving utilization rate of power are pointed out based on the detail analysis results of suction system's thermodynamics and hydrodynamics. On this condition, a design method for SWCR-specific impeller is presented, which shows how the impeller's key parameters impact its aerodynamic performance with the aid of computational fluid dynamics (CFD) simulations. The robot prototype, BIT Climber, is developed, and its functions such as mobility, adaptability on wall surface, payload, obstacle ability and wall surface inspection are tested. Through the experiments for the adhesion performance of the robot adsorption system on the normal wall surface, at the impeller's rated rotating speed, the total adsorption force can reach 237.2 N, the average effective negative pressure is 3.02 kPa and the design error is 3.8% only, which indicates a high efficiency. Furthermore, it is found that the robot suction system's static pressure efficiency reaches 84% and utilization rate of adsorption force 81% by the experiment. This thermodynamics model and SWCR-specific impeller design method can effectively improve SWCR's adsorption performance and expand this robot applicability on the various walls. A sliding wall-climbing robot with high adhesion efficiency is developed, and this robot has the features of light body in weight, small size in structure and good capability in payload.展开更多
A very highly efficient InGaAlAs/AlGaAs quantum-well structure was designed for 808 nm emission,and laser diode chips 390-μm-wide aperture and 2-mm-long cavity length were fabricated.Special pretreatment and passivat...A very highly efficient InGaAlAs/AlGaAs quantum-well structure was designed for 808 nm emission,and laser diode chips 390-μm-wide aperture and 2-mm-long cavity length were fabricated.Special pretreatment and passivation for the chip facets were performed to achieve improved reliability performance.The laser chips were p-side-down mounted on the AlN submount,and then tested at continuous wave(CW)operation with the heat-sink temperature setting to 25℃using a thermoelectric cooler(TEC).As high as 60.5%of the wall-plug efficiency(WPE)was achieved at the injection current of 11 A.The maximum output power of 30.1 W was obtained at 29.5 A when the TEC temperature was set to 12°C.Accelerated life-time test showed that the laser diodes had lifetimes of over 62111 h operating at rated power of 10 W.展开更多
The pre-multiplied spanwise energy spectra of streamwise velocity fluctuations are investigated in this paper. Two distinct spectral peaks in the spanwise spectra are observed in low-Reynolds-number wall-bounded turbu...The pre-multiplied spanwise energy spectra of streamwise velocity fluctuations are investigated in this paper. Two distinct spectral peaks in the spanwise spectra are observed in low-Reynolds-number wall-bounded turbulence. The spectra are calculated from direct numerical simulation (DNS) of turbulent channel flows and zero-pressure-gradient boundary layer flows. These two peaks locate in the nearwall and outer regions and are referred to as the inner peak and the outer peak, respectively. This result implies that the streamwise velocity fluctuations can be separated into large and small scales in the spanwise direction even though the friction Reynolds number Rer can be as low as 1000. The properties of the inner and outer peaks in the spanwise spec- tra are analyzed. The locations of the inner peak are invariant over a range of Reynolds numbers. However, the locations of the outer peak are associated with the Reynolds number, which are much higher than those of the outer peak of the pre-multiplied streamwise energy spectra of the streamwise velocity.展开更多
A new structural system called a stepped wall-frame structure is proposed in this study to solve the bottom yielding problem of RC frames, which widely occurred during previous earthquakes such as thc Wcnchuan and Yus...A new structural system called a stepped wall-frame structure is proposed in this study to solve the bottom yielding problem of RC frames, which widely occurred during previous earthquakes such as thc Wcnchuan and Yushu earthquakes in China. A 1/5 scale ordinary RC frame model and a stepped wall-frame model were subjected to shake table motions together to study the seismic behavior of the new structural system. This paper presents the dynamic characteristics, the seismic responses and the failure and collapse mechanism of the two models under low, moderate and high intensity shaking. The test results and further analysis demonstrate that the seismic performance of stepped wall-frame structures is superior to ordinary RC frames in terms of the well-controlled deformation pattern and more uniformly distributed damage. The stepped wall can effectively suppress the bottom yielding mechanism, and is simple, economical and practical tbr engineering practice.展开更多
Abstract The Shibangou gold deposit in western Henan is associated with irregular quartz veinlets occurring in altered shear zones dissecting a dioritic intrusion. The altered shear zones are characterized by silicifi...Abstract The Shibangou gold deposit in western Henan is associated with irregular quartz veinlets occurring in altered shear zones dissecting a dioritic intrusion. The altered shear zones are characterized by silicification, pyritization, sericilization, chloritization and K-feldspar alteration. Zoning of altered rocks adjacent to the Au-bearing quartz veins is obviously exhibited. Fine-grained sulphides and quartz veinlets of different ages and small-scale fissures are widely distributed in the central part of the altered zones. Major mineralization types in this gold deposit are Au-bearing quartz veinlets and altered rocks in the shear zones. Samples were collected from drilling cores according to the alteration zoning and mineralization type and all samples were analyzed for major and trace elements. Mass balance, volume change (fv=97.3–71.9%) and major element variation sequences are studied in terms of major elements. The changes of mobile components (SiO2, K2O, Fe2O3) and CaO) and immobile component (Al2O3) in the wall-rock alteration are discussed. The gold mineralization is associated with the enrichment of As, Ag, Hg and Pb and depletion of Cu and Zn. The study of compositional variation of altered rocks proves to be a very efficient method for defining the extent of wall-rock alteration, fluid activity and mineralization and enrichment.展开更多
Wall-associated kinases(WAKs) play an important role in plant defense and development.Considerable progress has been made in understanding WAK genes in Arabidopsis thaliana.However, much less is known about these gene...Wall-associated kinases(WAKs) play an important role in plant defense and development.Considerable progress has been made in understanding WAK genes in Arabidopsis thaliana.However, much less is known about these genes in common wheat. Here, we isolated a novel wheat WAK gene TaWAK5 from sharp eyespot disease-resistant wheat line CI12633,based on a differentially-expressed sequence identified by microarray analysis. The transcript abundance of TaWAK5 was rapidly increased following inoculation with the pathogen Rhizoctonia cerealis. TaWAK5 in resistant wheat lines was induced to higher levels than in susceptible lines at 7 days post inoculation with R. cerealis. The expression of TaWAK5 was also induced by treatments with exogenous salicylic acid, abscisic acid, and methyl jasmonate. The deduced TaWAK5 protein contained a signal peptide, two epidermal growth factor(EGF)-like repeats, a transmembrane domain, and a serine/threonine protein kinase catalytic domain. Subcellular localization analyses in onion epidermal cells indicated that the TaWAK5 protein was localized to the plasma membrane. Virus-induced gene silencing of TaWAK5 in CI12633 plants showed that the silencing of TaWAK5 did not obviously impair wheat resistance to R. cerealis, suggesting that TaWAK5 may be not the major gene in wheat defense response to R. cerealis, or that it is functionally redundant with other genes. This study paves the way for further research into WAK functions in wheat stress physiology.展开更多
Abstract Experiments were conducted in a water tunnel by tomographic time-resolved particle image velocimetry (Tomo-TRPIV). The Reynolds number Reo is 2 460 on the base of momentum thickness. According to the physic...Abstract Experiments were conducted in a water tunnel by tomographic time-resolved particle image velocimetry (Tomo-TRPIV). The Reynolds number Reo is 2 460 on the base of momentum thickness. According to the physical mechanism of the stretch and compression of multi-scale vortex structures in the wall-bounded turbulence, the topological characteristics of turbulence statistics in logarithmic layer were illustrated by local-averaged velocity structure function. During coherent structures bursting, results reveal that the topological structures of velocity gradients, velocity strain rates and vorticities behave as antisymmetric quadrupole modes. A three-layer antisymmetric quadrupole vortex packet confirms that there is a tight relationship between the outer layer and the near-wall layer.展开更多
The instability of the Mack mode is destabilized by wall-cooling in a high speed boundary layer. The aim of this paper is to study the mechanism of the wall cooling effect on the Mack mode instability by numerical met...The instability of the Mack mode is destabilized by wall-cooling in a high speed boundary layer. The aim of this paper is to study the mechanism of the wall cooling effect on the Mack mode instability by numerical methods. It is shown that the wall-cooling can destabilize the Mack mode instability, similar to the previous conclusions with the exception that the Mack mode instability can be stabilized by wall-cooling if the wall temperature is extremely low. The reversed wall temperature is related to a freestream condition. If the Mach number increases to a large enough value, e.g., about 7, the reversed wall temperature will tend to be zero. It seems that the Mack mode instability is determined by the region between the boundary layer edge and the critical layer. When the wall temperature decreases, this region becomes wider, and the boundary layer becomes more unstable. Additionally, a relative supersonic unstable mode can be observed when the velocity of the critical layer is less than 1 - liMa or is cancelled by the wall-cooling effect. These results provide a deeper understanding on the wall-cooling effect in high speed boundary layers.展开更多
Transit gait programming is a key problem for a multi-legged robot to climb automatically from the ground up the wall, as well as between wall intersections. In this paper, a new idea is put forward by which the compl...Transit gait programming is a key problem for a multi-legged robot to climb automatically from the ground up the wall, as well as between wall intersections. In this paper, a new idea is put forward by which the complex transit gait is decomposed into a sequence of two relatively simpler parts - single-leg motion and body pitching motion. An algorithm based on the above concept shows its feasibility and effectiveness in the graphic kinematics simulation.展开更多
A combined logic- and model-based approach to fault detection and identification (FDI) in a suction foot control system of a wall-climbing robot is presented in this paper. For the control system, some fault models ...A combined logic- and model-based approach to fault detection and identification (FDI) in a suction foot control system of a wall-climbing robot is presented in this paper. For the control system, some fault models are derived by kinematics analysis. Moreover, the logic relations of the system states are known in advance. First, a fault tree is used to analyze the system by evaluating the basic events (elementary causes), which can lead to a root event (a particular fault). Then, a multiple-model adaptive estimation algorithm is used to detect and identify the model-known faults. Finally, based on the system states of the robot and the results of the estimation, the model-unknown faults are also identified using logical reasoning. Experiments show that the proposed approach based on the combination of logical reasoning and model estimating is efficient in the FDI of the robot.展开更多
In conection with the complex working-surroundings of the wall-climbing Robot, this paper researched akind of alternatively moving mechanism with good obstacle-surmounting ability and high moving speed, making use oft...In conection with the complex working-surroundings of the wall-climbing Robot, this paper researched akind of alternatively moving mechanism with good obstacle-surmounting ability and high moving speed, making use ofthe thought of bionics. This paper designed a kind of self-adjusting multi-vacuum sucker. Furthermore, it employedthe theory of vacuum system to establish the work mathematics madel of control switch to are sucking disc and presented the design parameter of the control switch. In addition, this paper made use of the thought of bionics to design aobstacle-surmounting mechanism used in wall-climbing robot. Also it employed the theory Of robotics to analyze the kinematics and the dynamics movement of die robot.展开更多
Despite recent progress, laminar-turbulent coexistence in transitional planar wall-bounded shear flows is still not well understood. Contrasting with the processes by which chaotic flow inside turbulent patches is sus...Despite recent progress, laminar-turbulent coexistence in transitional planar wall-bounded shear flows is still not well understood. Contrasting with the processes by which chaotic flow inside turbulent patches is sustained at the local(minimal flow unit) scale, the mechanisms controlling the obliqueness of laminar-turbulent interfaces typically observed all along the coexistence range are still mysterious. An extension of Waleffe's approach [Waleffe, 1997] is used to show that,already at the local scale, drift flows breaking the problem's spanwise symmetry are generated just by slightly detuning the modes involved in the self-sustainment process. This opens perspectives for theorizing the formation of laminar-turbulent patterns.展开更多
A wall-climbing robot that can continuously work on many types of wall surfaces has been developed. This robot based on low-vacuum adsorption principle consists of a locomotion mecha- nism, a sealing device, a fluid m...A wall-climbing robot that can continuously work on many types of wall surfaces has been developed. This robot based on low-vacuum adsorption principle consists of a locomotion mecha- nism, a sealing device, a fluid machine and a detecting system. The adsorption force is analyzed in details and its influencing factors are given. The robot prototype, which has the features of high ad- hesion efficiency, light body in weight, small size in structure and good capability in payload, is test- ed in outdoor and indoor environments. Through the experiments, the influences of the impeller slit and the seal clearance are discussed. In addition, the robot functions such as adsorption perform- ance, locomotion performance and wall adaptability are tested by experiments. The experiments have verified that the robot not only can climb on many types of wall surfaces, but also has outstand- ing locomotion ability and payload capacity.展开更多
The aim of this paper is to present an analytical expression for the streamwise velocity distribution in a non-uniform flow in the presence of waves; the correlation between the horizontal and vertical velocity compon...The aim of this paper is to present an analytical expression for the streamwise velocity distribution in a non-uniform flow in the presence of waves; the correlation between the horizontal and vertical velocity components has been compreheusively examined. Different from previous researches which attributed the deviation of velocity from the classical log-law to the wave Reynolds stress, i.e. - ρ uv^- only, this study demonstrates that the momentum flux caused by mean velocities, i.e., u^- and v^-, is also responsible for the velocity deviation, and it is found that the streamwise velocity for a flow in the presence of non-zero wall-normal velocity does not follow the classical log-law, but the modified log-law proposed in this study based on simplified mixing-length theorem. The validity of the modified log-law has been verified by use of available experimental data from published sources for combined wave-current flows, and good agreement between the predicted and observed velocity profiles has been achieved.展开更多
基金Projects(61372161,61271441)supported by the National Natural Science Foundation of China
文摘In ultra-wideband through-wall-imaging applications, wall clutters are always much stronger than the target reflections, and they tend to persist over a long period of time. As a result, targets are obscured and not visible in the image. In this work, an antenna planes-based wall clutter mitigation method was proposed. By using two imaging procedures in different scanning planes, this method can mitigate the wall clutter in both SAR and MIMO modes. The proposed method was tested using EM numerical data via the FDTD method. The processing results show that the imaging quality is improved significantly.
基金supported by Ministry of Housing and Urban-Rural Development of China (Grant No. 2007-k8-6)National Natural Science of Foundation of China (Grant No. 60975070)
文摘Sliding wall-climbing robot (SWCR) is applied worldwide for its continuous motion, however, considerable air leakage causes two problems: great power consumption and big noise, and they constraint the robot's comprehensive performance. So far, effective theoretical model is still lacked to solve the problems. The concept of SWCR's adsorption performance is presented, and the techniques of improving utilization rate of given adsorption force and utilization rate of power are studied respectively to improve SWCR's adsorption performance. The effect of locomotion mechanism selection and seal's pressure allocation upon utilization rate of given adsorption force is discussed, and the theoretical way for relevant parameters optimization are provided. The directions for improving utilization rate of power are pointed out based on the detail analysis results of suction system's thermodynamics and hydrodynamics. On this condition, a design method for SWCR-specific impeller is presented, which shows how the impeller's key parameters impact its aerodynamic performance with the aid of computational fluid dynamics (CFD) simulations. The robot prototype, BIT Climber, is developed, and its functions such as mobility, adaptability on wall surface, payload, obstacle ability and wall surface inspection are tested. Through the experiments for the adhesion performance of the robot adsorption system on the normal wall surface, at the impeller's rated rotating speed, the total adsorption force can reach 237.2 N, the average effective negative pressure is 3.02 kPa and the design error is 3.8% only, which indicates a high efficiency. Furthermore, it is found that the robot suction system's static pressure efficiency reaches 84% and utilization rate of adsorption force 81% by the experiment. This thermodynamics model and SWCR-specific impeller design method can effectively improve SWCR's adsorption performance and expand this robot applicability on the various walls. A sliding wall-climbing robot with high adhesion efficiency is developed, and this robot has the features of light body in weight, small size in structure and good capability in payload.
基金supported by the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2018GY-005, No. 2017GY-065, No. 2017KJXX-72)
文摘A very highly efficient InGaAlAs/AlGaAs quantum-well structure was designed for 808 nm emission,and laser diode chips 390-μm-wide aperture and 2-mm-long cavity length were fabricated.Special pretreatment and passivation for the chip facets were performed to achieve improved reliability performance.The laser chips were p-side-down mounted on the AlN submount,and then tested at continuous wave(CW)operation with the heat-sink temperature setting to 25℃using a thermoelectric cooler(TEC).As high as 60.5%of the wall-plug efficiency(WPE)was achieved at the injection current of 11 A.The maximum output power of 30.1 W was obtained at 29.5 A when the TEC temperature was set to 12°C.Accelerated life-time test showed that the laser diodes had lifetimes of over 62111 h operating at rated power of 10 W.
基金supported by the National Natural Science Foundation of China (Grants 11302238, 11232011, 11572331, and 11490551)the support from the Strategic Priority Research Program (Grant XDB22040104)+1 种基金the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant QYZDJ-SSW-SYS002)the National Basic Research Program of China (973 Program 2013CB834100 : Nonlinear Science)
文摘The pre-multiplied spanwise energy spectra of streamwise velocity fluctuations are investigated in this paper. Two distinct spectral peaks in the spanwise spectra are observed in low-Reynolds-number wall-bounded turbulence. The spectra are calculated from direct numerical simulation (DNS) of turbulent channel flows and zero-pressure-gradient boundary layer flows. These two peaks locate in the nearwall and outer regions and are referred to as the inner peak and the outer peak, respectively. This result implies that the streamwise velocity fluctuations can be separated into large and small scales in the spanwise direction even though the friction Reynolds number Rer can be as low as 1000. The properties of the inner and outer peaks in the spanwise spec- tra are analyzed. The locations of the inner peak are invariant over a range of Reynolds numbers. However, the locations of the outer peak are associated with the Reynolds number, which are much higher than those of the outer peak of the pre-multiplied streamwise energy spectra of the streamwise velocity.
基金Special Fund for Earthquake Research under Grant No.201208013National key Technology R&D Program under Grant No.2012BAK15B05Basic Research Fund of Institute of Engineering Mechanics,CEA under Grant No.2010A04
文摘A new structural system called a stepped wall-frame structure is proposed in this study to solve the bottom yielding problem of RC frames, which widely occurred during previous earthquakes such as thc Wcnchuan and Yushu earthquakes in China. A 1/5 scale ordinary RC frame model and a stepped wall-frame model were subjected to shake table motions together to study the seismic behavior of the new structural system. This paper presents the dynamic characteristics, the seismic responses and the failure and collapse mechanism of the two models under low, moderate and high intensity shaking. The test results and further analysis demonstrate that the seismic performance of stepped wall-frame structures is superior to ordinary RC frames in terms of the well-controlled deformation pattern and more uniformly distributed damage. The stepped wall can effectively suppress the bottom yielding mechanism, and is simple, economical and practical tbr engineering practice.
文摘Abstract The Shibangou gold deposit in western Henan is associated with irregular quartz veinlets occurring in altered shear zones dissecting a dioritic intrusion. The altered shear zones are characterized by silicification, pyritization, sericilization, chloritization and K-feldspar alteration. Zoning of altered rocks adjacent to the Au-bearing quartz veins is obviously exhibited. Fine-grained sulphides and quartz veinlets of different ages and small-scale fissures are widely distributed in the central part of the altered zones. Major mineralization types in this gold deposit are Au-bearing quartz veinlets and altered rocks in the shear zones. Samples were collected from drilling cores according to the alteration zoning and mineralization type and all samples were analyzed for major and trace elements. Mass balance, volume change (fv=97.3–71.9%) and major element variation sequences are studied in terms of major elements. The changes of mobile components (SiO2, K2O, Fe2O3) and CaO) and immobile component (Al2O3) in the wall-rock alteration are discussed. The gold mineralization is associated with the enrichment of As, Ag, Hg and Pb and depletion of Cu and Zn. The study of compositional variation of altered rocks proves to be a very efficient method for defining the extent of wall-rock alteration, fluid activity and mineralization and enrichment.
基金funded by the National Natural Science Foundation of China(31271799)the National "Key Sci-Tech" program,China(2013ZX08002-001-004)the China–Czech Government Science and Technology Cooperation Project(40–3 and LH12196)
文摘Wall-associated kinases(WAKs) play an important role in plant defense and development.Considerable progress has been made in understanding WAK genes in Arabidopsis thaliana.However, much less is known about these genes in common wheat. Here, we isolated a novel wheat WAK gene TaWAK5 from sharp eyespot disease-resistant wheat line CI12633,based on a differentially-expressed sequence identified by microarray analysis. The transcript abundance of TaWAK5 was rapidly increased following inoculation with the pathogen Rhizoctonia cerealis. TaWAK5 in resistant wheat lines was induced to higher levels than in susceptible lines at 7 days post inoculation with R. cerealis. The expression of TaWAK5 was also induced by treatments with exogenous salicylic acid, abscisic acid, and methyl jasmonate. The deduced TaWAK5 protein contained a signal peptide, two epidermal growth factor(EGF)-like repeats, a transmembrane domain, and a serine/threonine protein kinase catalytic domain. Subcellular localization analyses in onion epidermal cells indicated that the TaWAK5 protein was localized to the plasma membrane. Virus-induced gene silencing of TaWAK5 in CI12633 plants showed that the silencing of TaWAK5 did not obviously impair wheat resistance to R. cerealis, suggesting that TaWAK5 may be not the major gene in wheat defense response to R. cerealis, or that it is functionally redundant with other genes. This study paves the way for further research into WAK functions in wheat stress physiology.
基金supported by the National Natural Science Fundation of China (11272233)National Basic Research Program (973 Program) (2012CB720101)2013 Opening Fund of LNM,Institute of Mechanics,Chinese Academy of Sciences
文摘Abstract Experiments were conducted in a water tunnel by tomographic time-resolved particle image velocimetry (Tomo-TRPIV). The Reynolds number Reo is 2 460 on the base of momentum thickness. According to the physical mechanism of the stretch and compression of multi-scale vortex structures in the wall-bounded turbulence, the topological characteristics of turbulence statistics in logarithmic layer were illustrated by local-averaged velocity structure function. During coherent structures bursting, results reveal that the topological structures of velocity gradients, velocity strain rates and vorticities behave as antisymmetric quadrupole modes. A three-layer antisymmetric quadrupole vortex packet confirms that there is a tight relationship between the outer layer and the near-wall layer.
基金Project supported by the State Key Program of National Natural Science Foundation of China(No.11332007)the Young Scientists Fund of the National Natural Science Foundation of China(No.11402167)
文摘The instability of the Mack mode is destabilized by wall-cooling in a high speed boundary layer. The aim of this paper is to study the mechanism of the wall cooling effect on the Mack mode instability by numerical methods. It is shown that the wall-cooling can destabilize the Mack mode instability, similar to the previous conclusions with the exception that the Mack mode instability can be stabilized by wall-cooling if the wall temperature is extremely low. The reversed wall temperature is related to a freestream condition. If the Mach number increases to a large enough value, e.g., about 7, the reversed wall temperature will tend to be zero. It seems that the Mack mode instability is determined by the region between the boundary layer edge and the critical layer. When the wall temperature decreases, this region becomes wider, and the boundary layer becomes more unstable. Additionally, a relative supersonic unstable mode can be observed when the velocity of the critical layer is less than 1 - liMa or is cancelled by the wall-cooling effect. These results provide a deeper understanding on the wall-cooling effect in high speed boundary layers.
文摘Transit gait programming is a key problem for a multi-legged robot to climb automatically from the ground up the wall, as well as between wall intersections. In this paper, a new idea is put forward by which the complex transit gait is decomposed into a sequence of two relatively simpler parts - single-leg motion and body pitching motion. An algorithm based on the above concept shows its feasibility and effectiveness in the graphic kinematics simulation.
基金supported by the Hi-tech Research and Development Program of China (No.2006AA420203)
文摘A combined logic- and model-based approach to fault detection and identification (FDI) in a suction foot control system of a wall-climbing robot is presented in this paper. For the control system, some fault models are derived by kinematics analysis. Moreover, the logic relations of the system states are known in advance. First, a fault tree is used to analyze the system by evaluating the basic events (elementary causes), which can lead to a root event (a particular fault). Then, a multiple-model adaptive estimation algorithm is used to detect and identify the model-known faults. Finally, based on the system states of the robot and the results of the estimation, the model-unknown faults are also identified using logical reasoning. Experiments show that the proposed approach based on the combination of logical reasoning and model estimating is efficient in the FDI of the robot.
文摘In conection with the complex working-surroundings of the wall-climbing Robot, this paper researched akind of alternatively moving mechanism with good obstacle-surmounting ability and high moving speed, making use ofthe thought of bionics. This paper designed a kind of self-adjusting multi-vacuum sucker. Furthermore, it employedthe theory of vacuum system to establish the work mathematics madel of control switch to are sucking disc and presented the design parameter of the control switch. In addition, this paper made use of the thought of bionics to design aobstacle-surmounting mechanism used in wall-climbing robot. Also it employed the theory Of robotics to analyze the kinematics and the dynamics movement of die robot.
文摘Despite recent progress, laminar-turbulent coexistence in transitional planar wall-bounded shear flows is still not well understood. Contrasting with the processes by which chaotic flow inside turbulent patches is sustained at the local(minimal flow unit) scale, the mechanisms controlling the obliqueness of laminar-turbulent interfaces typically observed all along the coexistence range are still mysterious. An extension of Waleffe's approach [Waleffe, 1997] is used to show that,already at the local scale, drift flows breaking the problem's spanwise symmetry are generated just by slightly detuning the modes involved in the self-sustainment process. This opens perspectives for theorizing the formation of laminar-turbulent patterns.
基金Supported by National Natural Science Foundation of China(61273344)Ph.D. Programs Foundation of Ministry of Education of China(20121101110011)State Key Laboratory of Robotics and Systems(HIT)(SKLRS-2011-ZD-06)
文摘A wall-climbing robot that can continuously work on many types of wall surfaces has been developed. This robot based on low-vacuum adsorption principle consists of a locomotion mecha- nism, a sealing device, a fluid machine and a detecting system. The adsorption force is analyzed in details and its influencing factors are given. The robot prototype, which has the features of high ad- hesion efficiency, light body in weight, small size in structure and good capability in payload, is test- ed in outdoor and indoor environments. Through the experiments, the influences of the impeller slit and the seal clearance are discussed. In addition, the robot functions such as adsorption perform- ance, locomotion performance and wall adaptability are tested by experiments. The experiments have verified that the robot not only can climb on many types of wall surfaces, but also has outstand- ing locomotion ability and payload capacity.
文摘The aim of this paper is to present an analytical expression for the streamwise velocity distribution in a non-uniform flow in the presence of waves; the correlation between the horizontal and vertical velocity components has been compreheusively examined. Different from previous researches which attributed the deviation of velocity from the classical log-law to the wave Reynolds stress, i.e. - ρ uv^- only, this study demonstrates that the momentum flux caused by mean velocities, i.e., u^- and v^-, is also responsible for the velocity deviation, and it is found that the streamwise velocity for a flow in the presence of non-zero wall-normal velocity does not follow the classical log-law, but the modified log-law proposed in this study based on simplified mixing-length theorem. The validity of the modified log-law has been verified by use of available experimental data from published sources for combined wave-current flows, and good agreement between the predicted and observed velocity profiles has been achieved.