To improve locomotion and operation integration, this paper presents an integrated leg-arm quadruped robot(ILQR) that has a reconfigurable joint. First, the reconfigurable joint is designed and assembled at the end of...To improve locomotion and operation integration, this paper presents an integrated leg-arm quadruped robot(ILQR) that has a reconfigurable joint. First, the reconfigurable joint is designed and assembled at the end of the legarm chain. When the robot performs a task, reconfigurable configuration and mode switching can be achieved using this joint. In contrast from traditional quadruped robots, this robot can stack in a designated area to optimize the occupied volume in a nonworking state. Kinematics modeling and dynamics modeling are established to evaluate the mechanical properties for multiple modes. All working modes of the robot are classified, which can be defined as deployable mode, locomotion mode and operation mode. Based on the stability margin and mechanical modeling, switching analysis and evaluation between each mode is carried out. Finally, the prototype experimental results verify the function realization and switching stability of multimode and provide a design method to integrate and perform multimode for quadruped robots with deployable characteristics.展开更多
Galloping cheetahs,climbing mountain goats,and load hauling horses all show desirable locomotion capability,which motivates the development of quadruped robots.Among various quadruped robots,hydraulically driven quadr...Galloping cheetahs,climbing mountain goats,and load hauling horses all show desirable locomotion capability,which motivates the development of quadruped robots.Among various quadruped robots,hydraulically driven quadruped robots show great potential in unstructured environments due to their discrete landing positions and large payloads.As the most critical movement unit of a quadruped robot,the limb leg unit(LLU)directly affects movement speed and reliability,and requires a compact and lightweight design.Inspired by the dexterous skeleton–muscle systems of cheetahs and humans,this paper proposes a highly integrated bionic actuator system for a better dynamic performance of an LLU.We propose that a cylinder barrel with multiple element interfaces and internal smooth channels is realized using metal additive manufacturing,and hybrid lattice structures are introduced into the lightweight design of the piston rod.In addition,additive manufacturing and topology optimization are incorporated to reduce the redundant material of the structural parts of the LLU.The mechanical properties of the actuator system are verified by numerical simulation and experiments,and the power density of the actuators is far greater than that of cheetah muscle.The mass of the optimized LLU is reduced by 24.5%,and the optimized LLU shows better response time performance when given a step signal,and presents a good trajectory tracking ability with the increase in motion frequency.展开更多
The body of quadruped robot is generally developed with the rigid structure. The mobility of quadruped robot depcnds on the mechanical properties of the body mechanism, It is difficult for quadruped robot with rigid s...The body of quadruped robot is generally developed with the rigid structure. The mobility of quadruped robot depcnds on the mechanical properties of the body mechanism, It is difficult for quadruped robot with rigid structure to achieve better mobility walking or running in the unstructured environment. A kind of bionic flexible body mechanism for quadruped robot is proposed, which is composed of one bionic spine and four pneumatic artificial muscles(PAMs). This kind of body imitates the four-legged creatures' kinematical structure and physical properties, which has the characteristic of changeable stiff'hess, lightweight, flexible and better bionics. The kinematics of body bending is derived, and the coordinated movement between the flexible body and legs is analyzed. The relationship between the body bending angle and the PAM length is obtained. The dynamics of the body bending is derived by the floating coordinate method and Lagrangian method, and the driving tbrce of PAM is determined. The experiment of body bending is conductcd, and the dynamic bending characteristic of bionic flexible body is evaluated. Experimental results show that the bending angle of the bionic flexible body can reach 18. An innovation body mechanism for quadruped robot is proposed, which has the characteristic of flexibility and achieve bending by changing gas pressure of PAMs. The coordinated movement of the body and legs can achieve spinning gait in order to improve the mobility of quadruped robot.展开更多
Fault tolerance is essential for quadruped robots when they work in remote areas or hazardous environments. Many fault-tolerant gaits planning method proposed in the past decade constrained more degrees of freedom(D...Fault tolerance is essential for quadruped robots when they work in remote areas or hazardous environments. Many fault-tolerant gaits planning method proposed in the past decade constrained more degrees of freedom(DOFs) of a robot than necessary. Thus a novel method to realize the fault-tolerant walking is proposed. The mobility of the robot is analyzed first by using the screw theory. The result shows that the translation of the center of body(CoB) can be kept with one faulty actuator if the rotations of the body are controlled. Thus the DOFs of the robot body are divided into two parts: the translation of the CoB and the rotation of the body. The kinematic model of the whole robot is built, the algorithm is developed to actively control the body orientations at the velocity level so that the planned CoB trajectory can be realized in spite of the constraint of the faulty actuator. This gait has a similar generation sequence with the normal gait and can be applied to the robot at any position. Simulations and experiments of the fault-tolerant gait with one faulty actuator are carried out. The CoB errors and the body rotation angles are measured. Comparing to the traditional fault-tolerant gait they can be reduced by at least 50%. A fault-tolerant gait planning algorithm is presented, which not only realizes the walking of a quadruped robot with a faulty actuator, but also efficiently improves the walking performances by taking full advantage of the remaining operational actuators according to the results of the simulations and experiments.展开更多
Quadruped robots consume a lot of energy, which is one of the factors restricting their application. Energy efficiency is one of the key evaluating indicators for walking robots. The relationship between energy and el...Quadruped robots consume a lot of energy, which is one of the factors restricting their application. Energy efficiency is one of the key evaluating indicators for walking robots. The relationship between energy and elastic elements of walking robots have been studied, but different walking gait patterns and contact status have important influences on locomotion energy efficiency, and the energy efficiency considering the foot-end trajectory has not been reported. Therefore, the energy consumption and energy efficiency of quadruped robot with trot gait and combined cycloid foot trajectory are studied. The forward and inverse kinematics of quadruped robot is derived. The combined cycloid function is proposed to generate horizontal and vertical foot trajectory respectively, which can ensure the acceleration curve of the foot-end smoother and more successive, and reduce the contact force between feet and environment. Because of the variable topology mechanism characteristic of quadruped robot, the leg state is divided into three different phases which are swing phase, transition phase and stance phase during one trot gait cycle. The non-continuous variable constraint between feet and environment of quadruped robot is studied. The dynamic model of quadruped robot is derived considering the variable topology mechanism characteristic, the periodic contact and elastic elements of the robot. The total energy consumption of walking robot during one gait cycle is analyzed based on the dynamic model. The specific resistance is used to evaluate energy efficiency of quadruped robot. The calculation results show the relationships between specific resistance and gait parameters, which can be used to determine the reasonable gait parameters.展开更多
The previous research regarding the gait planning of quadruped robot focuses on the sequence for lifting o and placing the feet, but neglects the influence of body height. However, body height a ects gait performance ...The previous research regarding the gait planning of quadruped robot focuses on the sequence for lifting o and placing the feet, but neglects the influence of body height. However, body height a ects gait performance significantly, such as in terms of the stride length and stability margin. We herein study the performance of a quadruped robot using the equivalent mechanism concept based on metamorphosis. Assuming the constraints between standing feet and the ground with hinges, the ground, standing legs and robot body are considered as a parallel mechanism, and each swing leg is regarded as a typical serial manipulator. The equivalent mechanism varies while the robot moves on the ground. One gait cycle is divided into several periods, including step forward stages and switching stages. There exists a specific equivalent mechanism corresponding to each gait period. The robot's locomotion can be regarded as the motion of these series of equivalent mechanisms. The kinematics model and simplified model of the equivalent mechanism is established. A new definition of the multilegged robot stability margin, based on friction coe cient, is presented to evaluate the robot stability. The stable workspaces of the equivalent mechanism in the step forward stage of trotting gait under di erent friction coe cients are analyzed. The stride length of the robots is presented by analyzing the relationship between the stable workspaces of the equivalent mechanisms of two adjacent step forward stages in one gait cycle. The simulation results show that the stride length is larger with increasing friction coe cient. We herein propose a new method based on metamorphosis, and an equivalent mechanism to analyze the stability margin and stable workspace of the multilegged robot.展开更多
This paper presents the design and prototype of a small quadruped robot whose walking motion is realized by two piezocomposite actuators. In the design, biomimetic ideas are employed to obtain the agility of motions a...This paper presents the design and prototype of a small quadruped robot whose walking motion is realized by two piezocomposite actuators. In the design, biomimetic ideas are employed to obtain the agility of motions and sustainability of a heavy load. The design of the robot legs is inspired by the leg configuration of insects, two joints (hip and knee) of the leg enable two basic motions, lifting and stepping. The robot frame is designed to have a slope relative to the horizontal plane, which makes the robot move forward. In addition, the bounding locomotion of quadruped animals is implemented in the robot. Experiments show that the robot can carry an additional load of about 100 g and run with a fairly high velocity. The quadruped prototype can be an important step towards the goal of building an autonomous mobile robot actuated by piezocomposite actuators.展开更多
By defining the static stable area for foot placement, a new approach toanalysis of quadruped robot stability is presented. Unlike conventionally, the method avoids solvingcomplicated direct kinematics of quadruped ro...By defining the static stable area for foot placement, a new approach toanalysis of quadruped robot stability is presented. Unlike conventionally, the method avoids solvingcomplicated direct kinematics of quadruped robot and shows the information on the robot stabilityand the selection of swing leg. Especially, the proposed algorithm can be used as real-timeoperation for on-line gait generation and control for quadruped robots. The effectiveness of theproposed approach is shown through a practical crawling experiment of the quadruped robotTITAN-VIII.展开更多
Quadruped robot dynamic gaits have much more advantages than static gaits on speed and efficiency, however high speed and efficiency calls for more complex mechanical structure and complicated control algorithm. It be...Quadruped robot dynamic gaits have much more advantages than static gaits on speed and efficiency, however high speed and efficiency calls for more complex mechanical structure and complicated control algorithm. It becomes even more challenging when the robot has more degrees of freedom.As a result, most of the present researches focused on simple robot, while the researches on dynamic gaits for complex robot with more degrees of freedom are relatively limited. The paper is focusing on the dynamic gaits control for complex robot with twenty degrees of freedom for the first time. Firstly, we build a relatively complete 3 D model for quadruped robot based on spring loaded inverted pendulum(SLIP) model, analyze the inverse kinematics of the model, plan the trajectory of the swing foot and analyze the hydraulic drive. Secondly, we promote the control algorithm of one-legged to the quadruped robot based on the virtual leg and plan the state variables of pace gait and bound gait. Lastly, we realize the above two kinds of dynamic gaits in ADAMS-MATLAB joint simulation platform which testify the validity of above method.展开更多
Sliding wall-climbing robot (SWCR) is applied worldwide for its continuous motion, however, considerable air leakage causes two problems: great power consumption and big noise, and they constraint the robot's comp...Sliding wall-climbing robot (SWCR) is applied worldwide for its continuous motion, however, considerable air leakage causes two problems: great power consumption and big noise, and they constraint the robot's comprehensive performance. So far, effective theoretical model is still lacked to solve the problems. The concept of SWCR's adsorption performance is presented, and the techniques of improving utilization rate of given adsorption force and utilization rate of power are studied respectively to improve SWCR's adsorption performance. The effect of locomotion mechanism selection and seal's pressure allocation upon utilization rate of given adsorption force is discussed, and the theoretical way for relevant parameters optimization are provided. The directions for improving utilization rate of power are pointed out based on the detail analysis results of suction system's thermodynamics and hydrodynamics. On this condition, a design method for SWCR-specific impeller is presented, which shows how the impeller's key parameters impact its aerodynamic performance with the aid of computational fluid dynamics (CFD) simulations. The robot prototype, BIT Climber, is developed, and its functions such as mobility, adaptability on wall surface, payload, obstacle ability and wall surface inspection are tested. Through the experiments for the adhesion performance of the robot adsorption system on the normal wall surface, at the impeller's rated rotating speed, the total adsorption force can reach 237.2 N, the average effective negative pressure is 3.02 kPa and the design error is 3.8% only, which indicates a high efficiency. Furthermore, it is found that the robot suction system's static pressure efficiency reaches 84% and utilization rate of adsorption force 81% by the experiment. This thermodynamics model and SWCR-specific impeller design method can effectively improve SWCR's adsorption performance and expand this robot applicability on the various walls. A sliding wall-climbing robot with high adhesion efficiency is developed, and this robot has the features of light body in weight, small size in structure and good capability in payload.展开更多
A new kind of flexible pneumatic wall-climbing robot,named WALKMAN-I,was proposed. WALKMAN-I is basically composed of a flexible pneumatic actuator (FPA),a flexible pneumatic spherical joint and six suction cups. It h...A new kind of flexible pneumatic wall-climbing robot,named WALKMAN-I,was proposed. WALKMAN-I is basically composed of a flexible pneumatic actuator (FPA),a flexible pneumatic spherical joint and six suction cups. It has many characteristics of low-cost,lightweight,simple structure and good flexibility. Its operating principle was introduced. Then three basic locomotion modes,which are linear motion,curvilinear motion and crossing the orthogonal planes,were presented. The safety conditions of WALKMAN-I were discussed and built. Finally,the control system was designed and experiments were carried out. Experimental results show that WALKMAN-I is able to climb on the vertical wall surface along a straight line or a curved path,and has the ability of crossing orthogonal planes and obstacles. The maximum rotation angle reaches 90°,the maximum velocity reaches 5 mm/s,and the rotation angle and the moving velocity of WALKMAN-I can be easily controlled.展开更多
In order to observe the change and fluctuation in flow and pressure of a hydraulic quadruped robot's hydraulic system when the robot walks on trot gait,a co-simulation method based on ADAMS and AMESim is proposed. Fi...In order to observe the change and fluctuation in flow and pressure of a hydraulic quadruped robot's hydraulic system when the robot walks on trot gait,a co-simulation method based on ADAMS and AMESim is proposed. Firstly,the change rule in each swing angle of the hydraulic quadruped robot's four legs is analyzed and converted to the displacement change of the hydraulic cylinder by calculating their geometric relationship.Secondly,the robot's dynamic model is built in ADAMS and its hydraulic and control system models are built in AMESim. The displacement change of the hydraulic cylinder in the hydraulic system is used as the driving function of the dynamics model in ADAMS,and the driving force of the dynamics model is used as the loads of the hydraulic system in AMESim. By introducing the PID closed-loop control in the control system,the co-simulation between hydraulic system and mechanical system is implemented. Finally,the curve of hydraulic cylinders' loads,flow and pressure are analyzed and the results show that they fluctuate highly in accordance with the real situation. The study provides data support for the development of a hydraulic quadruped robot's physical prototype.展开更多
In order to improve the adaptability of the quadruped robot in complex environments,a path planning method based on sliding window and variant A* algorithm for quadruped robot is presented. To improve the path plannin...In order to improve the adaptability of the quadruped robot in complex environments,a path planning method based on sliding window and variant A* algorithm for quadruped robot is presented. To improve the path planning efficiency and robot security,an incremental A* search algorithm( IA*) and the A* algorithm having obstacle grids extending( EA*) are proposed respectively. The IA* algorithm firstly searches an optimal path based on A* algorithm,then a new route from the current path to the new goal projection is added to generate a suboptimum route incrementally. In comparison with traditional method solving path planning problem from scratch,the IA* enables the robot to plan path more efficiently. EA* extends the obstacle by means of increasing grid g-value,which makes the route far away from the obstacle and avoids blocking the narrow passage. To navigate the robot running smoothly,a quadratic B-spline interpolation is applied to smooth the path.Simulation results illustrate that the IA* algorithm can increase the re-planning efficiency more than 5 times and demonstrate the effectiveness of the EA* algorithm.展开更多
In order to improve the force tracking performance of hydraulic quadruped robots in uncertain and unstructured environments,an impedance-based adaptive reference trajectory generation scheme is used.Secondly,in order ...In order to improve the force tracking performance of hydraulic quadruped robots in uncertain and unstructured environments,an impedance-based adaptive reference trajectory generation scheme is used.Secondly,in order to improve the robustness to environmental changes and reduce the contact force errors caused by trajectory tracking errors,the backstepping sliding mode controller is combined with the adaptive reference trajectory generator.Finally,a virtual damping control based on velocity and pressure feedback is proposed to solve the problem of contact force disappearance and stall caused by sudden environmental change.The simulation results show that the proposed scheme has higher contact force tracking accuracy when the environment is unchanged;the contact force error can always be guaranteed within an acceptable range when the environment is reasonably changed;when the environment suddenly changes,the drive unit can move slowly until the robot re-contacts the environment.展开更多
Large quadruped mammals,such as ruminants,have outstanding motion ability,including running and bounding.These advanced motion abilities are related to the buffer effect of their complicated musculoskeletal systems.Ho...Large quadruped mammals,such as ruminants,have outstanding motion ability,including running and bounding.These advanced motion abilities are related to the buffer effect of their complicated musculoskeletal systems.However,the buffer effect of most bio-robots is not satisfactory owing to the simple design of their buffer systems.In this paper,a physiological analysis of the ruminant musculoskeletal system is presented to explain the intrinsic buffer mechanism of motion.Based on the physical buffer parts of the ruminant limbs,the corresponding bionic mappings were determined.These mappings were used to guide the mechanism design of the robot multistage buffer system.The multistage buffer system includes two main buffer mechanisms:the first stage and the second stage.The buffer mechanism analysis of the first stage and multiple stages is discussed in theory to compare the effects between the normal single buffer system and the novel multistage buffer system.Then,the detailed mechanical structure of the limbs was designed based on the limb mechanism design.To further verify the superior efficacy of the multistage buffer system,the corresponding walking simulation experiments were conducted after the virtual prototype of a quadruped robot with a novel limb was built completely.Both theoretical analysis and simulation experiments prove that the bionic robot design with the novel multistage buffer system achieves better motion performance than the traditional robot buffer design and can be regarded as the design template of the robot limb.展开更多
The dynamic stability of a quadruped robot trotting on slope was analyzed.Compared with crawl gait,trot gait can improve walking speed of quadruped robots.When a quadruped robot trots,each leg is in the alternate stat...The dynamic stability of a quadruped robot trotting on slope was analyzed.Compared with crawl gait,trot gait can improve walking speed of quadruped robots.When a quadruped robot trots,each leg is in the alternate state of swing phase or supporting phase,and two legs in the diagonal line are in the same phase.The feet in the supporting phase form a supporting region on the ground.When a quadruped robot walks on slope,the vertical distance from zero moment point(ZMP) to the supporting diagonal line is defined as ZMP offset distance.Whether this distance is less than the maximum offset distance or not,the stability of robot trotting on slope can be judged.The foot trajectory was planned with the sinusoidal function.Based on the kinematic analysis,the ZMP offset distance of quadruped robot under different slope angles,step length and step height was calculated,then the reasonable slope angle,step length and step height for quadruped robot trotting on slope to keep dynamic stability can be determined.On the other hand,the posture angle of quadruped robot should be controlled within the desired range.Computer simulations were executed to verify the theoretical analysis.The study will provide reference for determining reasonable step parameters of the quadruped robot.展开更多
To improve the smoothness of motion control in a quadruped robot, a continuous and smooth gait transition method based on central pattern generator (CPG) was presented to solve the unsmooth or failed problem which m...To improve the smoothness of motion control in a quadruped robot, a continuous and smooth gait transition method based on central pattern generator (CPG) was presented to solve the unsmooth or failed problem which may result in phase-locked or sharp point with direct replacement of the gait matrix. Through improving conventional weight matrix, a CPG network and a MATLAB/ Simulink model were constructed based on the Hopf oscillator for gait generation and transition in the quadruped robot. A co-simulation was performed using ADAMS/MATLAB for the gait transition between walk and trot to verify the correctness and effectiveness of the proposed CPG gait generation and transition algorithms. Related methods and conclusions can technically support the motion control technology of the quadruped robot.展开更多
Quadruped robot driven by high power density hydraulic device works in unstructured en- vironment. With variable load and various external disturbance, the hydraulic servo system has fea- tures such as nonlinear, time...Quadruped robot driven by high power density hydraulic device works in unstructured en- vironment. With variable load and various external disturbance, the hydraulic servo system has fea- tures such as nonlinear, time-varying parameters. Traditional control method has some limitation. In order to help the hydraulic servo system of the quadruped robot to adapt to harsh environments, and to obtain high control quality and control precision, an incremental fuzzy adaptive PID controller based on position feedback is designed to solve the related technical problems. Matlab/Simulink sim- ulation and experimental results show that the incremental fuzzy adaptive PID controller improves the dynamic performance of the system, enhances the respond speed and precision of the hydraulic ser- vo system, and has some theory significance and practical value.展开更多
To realize the coordinated and stable rhythmic motion of quadruped robots (QRs), the locomotion control method of QRs based on central pattern generator (CPG) was explored. In tradi- tional control strategies base...To realize the coordinated and stable rhythmic motion of quadruped robots (QRs), the locomotion control method of QRs based on central pattern generator (CPG) was explored. In tradi- tional control strategies based on CPG, few CPG models care about the intra-limb coordination of QRs, and the durations of stance phase and swing phase are always equal. In view of these deficien- cies, a new and simpler multi-joint coordinated control method for both inter-limb and intra-limb was proposed in this paper. A layered CPG control network to realize the locomotion control of QRs was constructed by using modified Hopf oscillators. The coupled relationships among hip joints of all limbs and between hip joint and knee joint within a limb were established. Using the co-simulation method of ADAMS and MATLAB/Simulink, various gait simulation experiments were carried out and the effectiveness of the designed control network was tested. Simulation results show that the pro- posed control method is effective for QRs and can meet the control requirements of QRs' gaits with different duty factors.展开更多
Quadruped robot is considered to be the most practical locomotion machine to negotiate uneven terrain, and shows superb stability during static walking. To improve the ability to go over rough terrain, this paper is f...Quadruped robot is considered to be the most practical locomotion machine to negotiate uneven terrain, and shows superb stability during static walking. To improve the ability to go over rough terrain, this paper is focused on the stable walking and balance control of quadruped robots. 24 kinds of walking gaits are analyzed in order to derive the most stable and smoothest walking gait. Considering the inefficiency to model a terrain by its specified appearance, a uniform terrain model is established and by means of kinematic analysis, a method to adjust the body posture and center of gravity (COG) height is presented. Simulations demonstrate the effectiveness of the proposed meth- od and the improvement of the adaptation of quadruped robots on rough terrain.展开更多
基金Supported by National Natural Science Foundation of China (Grant Nos. 52375003, 52205006)National Key R&D Program of China (Grant No. 2019YFB1309600)。
文摘To improve locomotion and operation integration, this paper presents an integrated leg-arm quadruped robot(ILQR) that has a reconfigurable joint. First, the reconfigurable joint is designed and assembled at the end of the legarm chain. When the robot performs a task, reconfigurable configuration and mode switching can be achieved using this joint. In contrast from traditional quadruped robots, this robot can stack in a designated area to optimize the occupied volume in a nonworking state. Kinematics modeling and dynamics modeling are established to evaluate the mechanical properties for multiple modes. All working modes of the robot are classified, which can be defined as deployable mode, locomotion mode and operation mode. Based on the stability margin and mechanical modeling, switching analysis and evaluation between each mode is carried out. Finally, the prototype experimental results verify the function realization and switching stability of multimode and provide a design method to integrate and perform multimode for quadruped robots with deployable characteristics.
基金The work is supported by the National Natural Science Foundation of China(Nos.U21A20124 and 52205059)the Key Research and Development Program of Zhejiang Province(No.2022C01039)。
文摘Galloping cheetahs,climbing mountain goats,and load hauling horses all show desirable locomotion capability,which motivates the development of quadruped robots.Among various quadruped robots,hydraulically driven quadruped robots show great potential in unstructured environments due to their discrete landing positions and large payloads.As the most critical movement unit of a quadruped robot,the limb leg unit(LLU)directly affects movement speed and reliability,and requires a compact and lightweight design.Inspired by the dexterous skeleton–muscle systems of cheetahs and humans,this paper proposes a highly integrated bionic actuator system for a better dynamic performance of an LLU.We propose that a cylinder barrel with multiple element interfaces and internal smooth channels is realized using metal additive manufacturing,and hybrid lattice structures are introduced into the lightweight design of the piston rod.In addition,additive manufacturing and topology optimization are incorporated to reduce the redundant material of the structural parts of the LLU.The mechanical properties of the actuator system are verified by numerical simulation and experiments,and the power density of the actuators is far greater than that of cheetah muscle.The mass of the optimized LLU is reduced by 24.5%,and the optimized LLU shows better response time performance when given a step signal,and presents a good trajectory tracking ability with the increase in motion frequency.
基金Supported by National Natural Science Foundation of China(Grant No.51375289)Shanghai Municipal Natural Science Foundation of China(Grant No.13ZR1415500)Innovation Fund of Shanghai Education Commission(Grant No.13YZ020)
文摘The body of quadruped robot is generally developed with the rigid structure. The mobility of quadruped robot depcnds on the mechanical properties of the body mechanism, It is difficult for quadruped robot with rigid structure to achieve better mobility walking or running in the unstructured environment. A kind of bionic flexible body mechanism for quadruped robot is proposed, which is composed of one bionic spine and four pneumatic artificial muscles(PAMs). This kind of body imitates the four-legged creatures' kinematical structure and physical properties, which has the characteristic of changeable stiff'hess, lightweight, flexible and better bionics. The kinematics of body bending is derived, and the coordinated movement between the flexible body and legs is analyzed. The relationship between the body bending angle and the PAM length is obtained. The dynamics of the body bending is derived by the floating coordinate method and Lagrangian method, and the driving tbrce of PAM is determined. The experiment of body bending is conductcd, and the dynamic bending characteristic of bionic flexible body is evaluated. Experimental results show that the bending angle of the bionic flexible body can reach 18. An innovation body mechanism for quadruped robot is proposed, which has the characteristic of flexibility and achieve bending by changing gas pressure of PAMs. The coordinated movement of the body and legs can achieve spinning gait in order to improve the mobility of quadruped robot.
基金Supported by National Basic Research Program of China(973 Program,Grant No.2013CB035501)National Natural Science Foundation of China(Grant No.51175323)+1 种基金Research Fund of the State Key Lab of MSV of China(Grant No.MSV201208)Shanghai Municipal Natural Science Foundation of China(Grant No.14ZR1422600)
文摘Fault tolerance is essential for quadruped robots when they work in remote areas or hazardous environments. Many fault-tolerant gaits planning method proposed in the past decade constrained more degrees of freedom(DOFs) of a robot than necessary. Thus a novel method to realize the fault-tolerant walking is proposed. The mobility of the robot is analyzed first by using the screw theory. The result shows that the translation of the center of body(CoB) can be kept with one faulty actuator if the rotations of the body are controlled. Thus the DOFs of the robot body are divided into two parts: the translation of the CoB and the rotation of the body. The kinematic model of the whole robot is built, the algorithm is developed to actively control the body orientations at the velocity level so that the planned CoB trajectory can be realized in spite of the constraint of the faulty actuator. This gait has a similar generation sequence with the normal gait and can be applied to the robot at any position. Simulations and experiments of the fault-tolerant gait with one faulty actuator are carried out. The CoB errors and the body rotation angles are measured. Comparing to the traditional fault-tolerant gait they can be reduced by at least 50%. A fault-tolerant gait planning algorithm is presented, which not only realizes the walking of a quadruped robot with a faulty actuator, but also efficiently improves the walking performances by taking full advantage of the remaining operational actuators according to the results of the simulations and experiments.
基金supported by National Natural Science Foundation of China(Grant No.51375289)Shanghai Municipal National Natural Science Foundation of China(Grant No.13ZR1415500)Innovation Fund of Shanghai Education Commission of China(Grant No.13YZ020)
文摘Quadruped robots consume a lot of energy, which is one of the factors restricting their application. Energy efficiency is one of the key evaluating indicators for walking robots. The relationship between energy and elastic elements of walking robots have been studied, but different walking gait patterns and contact status have important influences on locomotion energy efficiency, and the energy efficiency considering the foot-end trajectory has not been reported. Therefore, the energy consumption and energy efficiency of quadruped robot with trot gait and combined cycloid foot trajectory are studied. The forward and inverse kinematics of quadruped robot is derived. The combined cycloid function is proposed to generate horizontal and vertical foot trajectory respectively, which can ensure the acceleration curve of the foot-end smoother and more successive, and reduce the contact force between feet and environment. Because of the variable topology mechanism characteristic of quadruped robot, the leg state is divided into three different phases which are swing phase, transition phase and stance phase during one trot gait cycle. The non-continuous variable constraint between feet and environment of quadruped robot is studied. The dynamic model of quadruped robot is derived considering the variable topology mechanism characteristic, the periodic contact and elastic elements of the robot. The total energy consumption of walking robot during one gait cycle is analyzed based on the dynamic model. The specific resistance is used to evaluate energy efficiency of quadruped robot. The calculation results show the relationships between specific resistance and gait parameters, which can be used to determine the reasonable gait parameters.
基金Supported by National Natural Science Foundation of China(Grant Nos.51775011,91748201)
文摘The previous research regarding the gait planning of quadruped robot focuses on the sequence for lifting o and placing the feet, but neglects the influence of body height. However, body height a ects gait performance significantly, such as in terms of the stride length and stability margin. We herein study the performance of a quadruped robot using the equivalent mechanism concept based on metamorphosis. Assuming the constraints between standing feet and the ground with hinges, the ground, standing legs and robot body are considered as a parallel mechanism, and each swing leg is regarded as a typical serial manipulator. The equivalent mechanism varies while the robot moves on the ground. One gait cycle is divided into several periods, including step forward stages and switching stages. There exists a specific equivalent mechanism corresponding to each gait period. The robot's locomotion can be regarded as the motion of these series of equivalent mechanisms. The kinematics model and simplified model of the equivalent mechanism is established. A new definition of the multilegged robot stability margin, based on friction coe cient, is presented to evaluate the robot stability. The stable workspaces of the equivalent mechanism in the step forward stage of trotting gait under di erent friction coe cients are analyzed. The stride length of the robots is presented by analyzing the relationship between the stable workspaces of the equivalent mechanisms of two adjacent step forward stages in one gait cycle. The simulation results show that the stride length is larger with increasing friction coe cient. We herein propose a new method based on metamorphosis, and an equivalent mechanism to analyze the stability margin and stable workspace of the multilegged robot.
文摘This paper presents the design and prototype of a small quadruped robot whose walking motion is realized by two piezocomposite actuators. In the design, biomimetic ideas are employed to obtain the agility of motions and sustainability of a heavy load. The design of the robot legs is inspired by the leg configuration of insects, two joints (hip and knee) of the leg enable two basic motions, lifting and stepping. The robot frame is designed to have a slope relative to the horizontal plane, which makes the robot move forward. In addition, the bounding locomotion of quadruped animals is implemented in the robot. Experiments show that the robot can carry an additional load of about 100 g and run with a fairly high velocity. The quadruped prototype can be an important step towards the goal of building an autonomous mobile robot actuated by piezocomposite actuators.
基金This project is supported by Hi-Tech ResearchDevelopment Program of China (863 Program) (No.2001AA422380)
文摘By defining the static stable area for foot placement, a new approach toanalysis of quadruped robot stability is presented. Unlike conventionally, the method avoids solvingcomplicated direct kinematics of quadruped robot and shows the information on the robot stabilityand the selection of swing leg. Especially, the proposed algorithm can be used as real-timeoperation for on-line gait generation and control for quadruped robots. The effectiveness of theproposed approach is shown through a practical crawling experiment of the quadruped robotTITAN-VIII.
基金supported by the National Science Fund for Distinguished Young Scholars of China(51225503)the National Natural Science Foundation of China(61603076)the Fundamental Research Funds for the Central Universities(ZYGX2016J116)
文摘Quadruped robot dynamic gaits have much more advantages than static gaits on speed and efficiency, however high speed and efficiency calls for more complex mechanical structure and complicated control algorithm. It becomes even more challenging when the robot has more degrees of freedom.As a result, most of the present researches focused on simple robot, while the researches on dynamic gaits for complex robot with more degrees of freedom are relatively limited. The paper is focusing on the dynamic gaits control for complex robot with twenty degrees of freedom for the first time. Firstly, we build a relatively complete 3 D model for quadruped robot based on spring loaded inverted pendulum(SLIP) model, analyze the inverse kinematics of the model, plan the trajectory of the swing foot and analyze the hydraulic drive. Secondly, we promote the control algorithm of one-legged to the quadruped robot based on the virtual leg and plan the state variables of pace gait and bound gait. Lastly, we realize the above two kinds of dynamic gaits in ADAMS-MATLAB joint simulation platform which testify the validity of above method.
基金supported by Ministry of Housing and Urban-Rural Development of China (Grant No. 2007-k8-6)National Natural Science of Foundation of China (Grant No. 60975070)
文摘Sliding wall-climbing robot (SWCR) is applied worldwide for its continuous motion, however, considerable air leakage causes two problems: great power consumption and big noise, and they constraint the robot's comprehensive performance. So far, effective theoretical model is still lacked to solve the problems. The concept of SWCR's adsorption performance is presented, and the techniques of improving utilization rate of given adsorption force and utilization rate of power are studied respectively to improve SWCR's adsorption performance. The effect of locomotion mechanism selection and seal's pressure allocation upon utilization rate of given adsorption force is discussed, and the theoretical way for relevant parameters optimization are provided. The directions for improving utilization rate of power are pointed out based on the detail analysis results of suction system's thermodynamics and hydrodynamics. On this condition, a design method for SWCR-specific impeller is presented, which shows how the impeller's key parameters impact its aerodynamic performance with the aid of computational fluid dynamics (CFD) simulations. The robot prototype, BIT Climber, is developed, and its functions such as mobility, adaptability on wall surface, payload, obstacle ability and wall surface inspection are tested. Through the experiments for the adhesion performance of the robot adsorption system on the normal wall surface, at the impeller's rated rotating speed, the total adsorption force can reach 237.2 N, the average effective negative pressure is 3.02 kPa and the design error is 3.8% only, which indicates a high efficiency. Furthermore, it is found that the robot suction system's static pressure efficiency reaches 84% and utilization rate of adsorption force 81% by the experiment. This thermodynamics model and SWCR-specific impeller design method can effectively improve SWCR's adsorption performance and expand this robot applicability on the various walls. A sliding wall-climbing robot with high adhesion efficiency is developed, and this robot has the features of light body in weight, small size in structure and good capability in payload.
基金Project (50575206) supported by the National Natural Science Foundation of ChinaProject (BX102716) supported by Xinmiao Program of Zhejiang Province, China
文摘A new kind of flexible pneumatic wall-climbing robot,named WALKMAN-I,was proposed. WALKMAN-I is basically composed of a flexible pneumatic actuator (FPA),a flexible pneumatic spherical joint and six suction cups. It has many characteristics of low-cost,lightweight,simple structure and good flexibility. Its operating principle was introduced. Then three basic locomotion modes,which are linear motion,curvilinear motion and crossing the orthogonal planes,were presented. The safety conditions of WALKMAN-I were discussed and built. Finally,the control system was designed and experiments were carried out. Experimental results show that WALKMAN-I is able to climb on the vertical wall surface along a straight line or a curved path,and has the ability of crossing orthogonal planes and obstacles. The maximum rotation angle reaches 90°,the maximum velocity reaches 5 mm/s,and the rotation angle and the moving velocity of WALKMAN-I can be easily controlled.
文摘In order to observe the change and fluctuation in flow and pressure of a hydraulic quadruped robot's hydraulic system when the robot walks on trot gait,a co-simulation method based on ADAMS and AMESim is proposed. Firstly,the change rule in each swing angle of the hydraulic quadruped robot's four legs is analyzed and converted to the displacement change of the hydraulic cylinder by calculating their geometric relationship.Secondly,the robot's dynamic model is built in ADAMS and its hydraulic and control system models are built in AMESim. The displacement change of the hydraulic cylinder in the hydraulic system is used as the driving function of the dynamics model in ADAMS,and the driving force of the dynamics model is used as the loads of the hydraulic system in AMESim. By introducing the PID closed-loop control in the control system,the co-simulation between hydraulic system and mechanical system is implemented. Finally,the curve of hydraulic cylinders' loads,flow and pressure are analyzed and the results show that they fluctuate highly in accordance with the real situation. The study provides data support for the development of a hydraulic quadruped robot's physical prototype.
基金Supported by the National Natural Science Foundation of China(No.61233014,61305130,61503153)the National High Technology Research and Development Program of China(No.2015AA042201)+1 种基金the Shandong Provincial Natural Science Foundation(No.ZR2013FQ003,ZR2013EEM027)China Postdoctoral Science Foundation(No.2013M541912)
文摘In order to improve the adaptability of the quadruped robot in complex environments,a path planning method based on sliding window and variant A* algorithm for quadruped robot is presented. To improve the path planning efficiency and robot security,an incremental A* search algorithm( IA*) and the A* algorithm having obstacle grids extending( EA*) are proposed respectively. The IA* algorithm firstly searches an optimal path based on A* algorithm,then a new route from the current path to the new goal projection is added to generate a suboptimum route incrementally. In comparison with traditional method solving path planning problem from scratch,the IA* enables the robot to plan path more efficiently. EA* extends the obstacle by means of increasing grid g-value,which makes the route far away from the obstacle and avoids blocking the narrow passage. To navigate the robot running smoothly,a quadratic B-spline interpolation is applied to smooth the path.Simulation results illustrate that the IA* algorithm can increase the re-planning efficiency more than 5 times and demonstrate the effectiveness of the EA* algorithm.
基金Projects(51975376,51505289)supported by the National Natural Science Foundation of ChinaProject(19ZR1435400)supported by the Natural Science Foundation of Shanghai,China。
文摘In order to improve the force tracking performance of hydraulic quadruped robots in uncertain and unstructured environments,an impedance-based adaptive reference trajectory generation scheme is used.Secondly,in order to improve the robustness to environmental changes and reduce the contact force errors caused by trajectory tracking errors,the backstepping sliding mode controller is combined with the adaptive reference trajectory generator.Finally,a virtual damping control based on velocity and pressure feedback is proposed to solve the problem of contact force disappearance and stall caused by sudden environmental change.The simulation results show that the proposed scheme has higher contact force tracking accuracy when the environment is unchanged;the contact force error can always be guaranteed within an acceptable range when the environment is reasonably changed;when the environment suddenly changes,the drive unit can move slowly until the robot re-contacts the environment.
基金Supported by the National Key Research and Development Program of China(Grant No.2019YFB1309600)the National Natural Science Foundation of China(Grant Nos.51775011&91748201).
文摘Large quadruped mammals,such as ruminants,have outstanding motion ability,including running and bounding.These advanced motion abilities are related to the buffer effect of their complicated musculoskeletal systems.However,the buffer effect of most bio-robots is not satisfactory owing to the simple design of their buffer systems.In this paper,a physiological analysis of the ruminant musculoskeletal system is presented to explain the intrinsic buffer mechanism of motion.Based on the physical buffer parts of the ruminant limbs,the corresponding bionic mappings were determined.These mappings were used to guide the mechanism design of the robot multistage buffer system.The multistage buffer system includes two main buffer mechanisms:the first stage and the second stage.The buffer mechanism analysis of the first stage and multiple stages is discussed in theory to compare the effects between the normal single buffer system and the novel multistage buffer system.Then,the detailed mechanical structure of the limbs was designed based on the limb mechanism design.To further verify the superior efficacy of the multistage buffer system,the corresponding walking simulation experiments were conducted after the virtual prototype of a quadruped robot with a novel limb was built completely.Both theoretical analysis and simulation experiments prove that the bionic robot design with the novel multistage buffer system achieves better motion performance than the traditional robot buffer design and can be regarded as the design template of the robot limb.
基金Supported by the National Natural Science Foundation of China(No.51375289)Shanghai Municipal National Natural Science Foundation of China(No.13ZR1415500)Innovation Fund of Shanghai Education Commission(No.13YZ020)
文摘The dynamic stability of a quadruped robot trotting on slope was analyzed.Compared with crawl gait,trot gait can improve walking speed of quadruped robots.When a quadruped robot trots,each leg is in the alternate state of swing phase or supporting phase,and two legs in the diagonal line are in the same phase.The feet in the supporting phase form a supporting region on the ground.When a quadruped robot walks on slope,the vertical distance from zero moment point(ZMP) to the supporting diagonal line is defined as ZMP offset distance.Whether this distance is less than the maximum offset distance or not,the stability of robot trotting on slope can be judged.The foot trajectory was planned with the sinusoidal function.Based on the kinematic analysis,the ZMP offset distance of quadruped robot under different slope angles,step length and step height was calculated,then the reasonable slope angle,step length and step height for quadruped robot trotting on slope to keep dynamic stability can be determined.On the other hand,the posture angle of quadruped robot should be controlled within the desired range.Computer simulations were executed to verify the theoretical analysis.The study will provide reference for determining reasonable step parameters of the quadruped robot.
基金Supported by the Ministerial Level Advanced Research Foundation(65822576)
文摘To improve the smoothness of motion control in a quadruped robot, a continuous and smooth gait transition method based on central pattern generator (CPG) was presented to solve the unsmooth or failed problem which may result in phase-locked or sharp point with direct replacement of the gait matrix. Through improving conventional weight matrix, a CPG network and a MATLAB/ Simulink model were constructed based on the Hopf oscillator for gait generation and transition in the quadruped robot. A co-simulation was performed using ADAMS/MATLAB for the gait transition between walk and trot to verify the correctness and effectiveness of the proposed CPG gait generation and transition algorithms. Related methods and conclusions can technically support the motion control technology of the quadruped robot.
基金Supported by the Ministerial Level Advanced Research Foundation(65822576)
文摘Quadruped robot driven by high power density hydraulic device works in unstructured en- vironment. With variable load and various external disturbance, the hydraulic servo system has fea- tures such as nonlinear, time-varying parameters. Traditional control method has some limitation. In order to help the hydraulic servo system of the quadruped robot to adapt to harsh environments, and to obtain high control quality and control precision, an incremental fuzzy adaptive PID controller based on position feedback is designed to solve the related technical problems. Matlab/Simulink sim- ulation and experimental results show that the incremental fuzzy adaptive PID controller improves the dynamic performance of the system, enhances the respond speed and precision of the hydraulic ser- vo system, and has some theory significance and practical value.
基金Supported by the Ministerial Level Advanced Research Foundation(40401060305)
文摘To realize the coordinated and stable rhythmic motion of quadruped robots (QRs), the locomotion control method of QRs based on central pattern generator (CPG) was explored. In tradi- tional control strategies based on CPG, few CPG models care about the intra-limb coordination of QRs, and the durations of stance phase and swing phase are always equal. In view of these deficien- cies, a new and simpler multi-joint coordinated control method for both inter-limb and intra-limb was proposed in this paper. A layered CPG control network to realize the locomotion control of QRs was constructed by using modified Hopf oscillators. The coupled relationships among hip joints of all limbs and between hip joint and knee joint within a limb were established. Using the co-simulation method of ADAMS and MATLAB/Simulink, various gait simulation experiments were carried out and the effectiveness of the designed control network was tested. Simulation results show that the pro- posed control method is effective for QRs and can meet the control requirements of QRs' gaits with different duty factors.
基金Supported by the National High Technology Research and Development Program of China(863Program)(2011AA041002)
文摘Quadruped robot is considered to be the most practical locomotion machine to negotiate uneven terrain, and shows superb stability during static walking. To improve the ability to go over rough terrain, this paper is focused on the stable walking and balance control of quadruped robots. 24 kinds of walking gaits are analyzed in order to derive the most stable and smoothest walking gait. Considering the inefficiency to model a terrain by its specified appearance, a uniform terrain model is established and by means of kinematic analysis, a method to adjust the body posture and center of gravity (COG) height is presented. Simulations demonstrate the effectiveness of the proposed meth- od and the improvement of the adaptation of quadruped robots on rough terrain.