The effects of the water-cement ratio and the molding temperature on the hydration heat of cement were investigated with semi-adiabatic calorimetry.The specimens were prepared with water-cement ratios of 0.31,0.38,and...The effects of the water-cement ratio and the molding temperature on the hydration heat of cement were investigated with semi-adiabatic calorimetry.The specimens were prepared with water-cement ratios of 0.31,0.38,and 0.45,and the molding temperature was specified at 10 and 20℃.The experimental results show that,as the water-binder ratio increases,the value of the second temperature peak on the temperature curve of the cement paste decreases,and the age at which the peak appears is delayed.The higher the water-cement ratio,the higher the hydration heat release in the early period of cement hydration,but this trend reverses in the late period.There are intersection points of the total hydration heat curve of the cement pastes under the influence of the water-cement ratio,and this law can be observed at both molding temperatures.With the increase in the molding temperature,the age of the second temperature peak on the temperature curve of the cement paste will advance,but the temperature peak will decrease.The higher the molding temperature,the earlier the acceleration period of the cement hydration began,and the larger the hydration heat of the cement in the early stage,but the smaller the total heat in the late period.A subsection function calculation model of the hydration heat,which was based on the existing models,was proposed in order to predict the heat of the hydration of the concrete.展开更多
Previously, we presented several empirical equations using the cosmic microwave background (CMB) temperature. Next, we propose an empirical equation for the fine-structure constant. Considering the compatibility among...Previously, we presented several empirical equations using the cosmic microwave background (CMB) temperature. Next, we propose an empirical equation for the fine-structure constant. Considering the compatibility among these empirical equations, the CMB temperature (T<sub>c</sub>) and gravitational constant (G) were calculated to be 2.726312 K and 6.673778 × 10<sup>−11</sup> m<sup>3</sup>∙kg<sup>−1</sup>∙s<sup>−2</sup>, respectively. Every equation could be explained in terms of the Compton length of an electron (λ<sub>e</sub>), the Compton length of a proton (λ<sub>p</sub>) and a. Furthermore, every equation could also be explained in terms of Avogadro’s number and the number of electrons in 1 C. However, the ratio of the gravitational force to the electric force cannot be uniquely determined when the unit of the Planck constant (Js) is changed. In this study, we showed that every equation can be described in terms of Planck constant. From the assumption of minimum mass, the ratio of gravitational force to electric force could be elucidated.展开更多
Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusi...Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusion speeds(3 and 6 mm/s).The experimental results exhibited that the grain sizes after extrusion were much finer than that of the homogenized alloy,and the second phase showed streamline distribution along the extrusion direction(ED).With extrusion temperature increased from 260 to 320℃,the microstructure,texture,and mechanical properties of alloys changed slightly.The dynamic recrystallization(DRX)degree and grain sizes enhanced as the extrusion ratio increased from 10:1 to 30:1,and the strength gradually decreased but elongation(EL)increased.With the extrusion speed increased from 3 to 6 mm/s,the grain sizes and DRX degree increased significantly,and the samples presented the typical<2111>-<1123>rare-earth(RE)textures.The alloy extruded at 260℃ with extrusion ratio of 10:1 and extrusion speed of 3 mm/s showed the tensile yield strength(TYS)of 213 MPa and EL of 30.6%.After quantitatively analyzing the contribution of strengthening mechanisms,it was found that the grain boundary strengthening and dislocation strengthening played major roles among strengthening contributions.These results provide some guidelines for enlarging the industrial application of extruded Mg-RE alloy.展开更多
Compound casting is an efficient method for bonding dissimilar metals,in which a dramatic reaction can occur between the melt and solid.The centrifugal casting process,a type of compound casting,was applied to cast Al...Compound casting is an efficient method for bonding dissimilar metals,in which a dramatic reaction can occur between the melt and solid.The centrifugal casting process,a type of compound casting,was applied to cast Al/Mg dissimilar bimetals.Magnesium melt was poured at 700 °C,with melt-to-solid volume ratios(Vm/Vs) of 1.5 and 3,into a preheated hollow aluminum cylinder.The preheating temperatures of the solid part were 320,400,and 450 °C,and the constant rotational speed was 1,600 rpm.The cast parts were kept inside the casting machine until reaching the cooling temperature of 150 °C.The result showed that an increase in preheating temperature from 320 to 450 °C led to an enhanced reaction layer thickness.In addition,an increase in the Vm/Vs from 1.5 to 3 resulted in raising the interface thickness from 1.2 to 1.8 mm.Moreover,the interface was not continuously formed when a Vm/Vs of 3 was selected.In this case,the force of contraction overcame the resultant acting force on the interface.An interface formed at the volume ratio of 1.5 was examined using scanning electron microscopy(SEM) equipped with energy-dispersive X-ray spectroscopy(EDS),and the results demonstrated the formation of Al_(3)Mg_(2),Al_(12)Mg_(17) and(δ+Al_(12)Mg_(17)) eutectic structures in the interface.展开更多
Previously, we presented several empirical equations using the cosmic microwave background (CMB) temperature. Next, we propose an empirical equation for the fine-structure constant. Considering the compatibility among...Previously, we presented several empirical equations using the cosmic microwave background (CMB) temperature. Next, we propose an empirical equation for the fine-structure constant. Considering the compatibility among these empirical equations, the CMB temperature (Tc) and gravitational constant (G) were calculated to be 2.726312 K and 6.673778 × 10−11 m3∙kg−1∙s−2, respectively. Every equation can be explained numerically in terms of the Compton length of an electron (λe), the Compton length of a proton (λp) and α. Furthermore, every equation can also be explained in terms of the Avogadro number and the number of electrons at 1 C. We show that every equation can be described in terms of the Planck constant. Then, the ratio of the gravitational force to the electric force can be uniquely determined with the assumption of minimum mass. In this report, we describe the algorithms used to explain these equations in detail. Thus, there are no dimension mismatch problems.展开更多
Magnesium(Mg)alloys are the lightest metal structural material for engineering applications and therefore have a wide market of applications.However,compared to steel and aluminum alloys,Mg alloys have lower mechanica...Magnesium(Mg)alloys are the lightest metal structural material for engineering applications and therefore have a wide market of applications.However,compared to steel and aluminum alloys,Mg alloys have lower mechanical properties,which greatly limits their application.Extrusion is one of the most important processing methods for Mg and its alloys.However,the effect of such a heterogeneous microstructure achieved at low temperatures on the mechanical properties is lacking investigation.In this work,commercial AZ80 alloys with different initial microstructures(as-cast and as-homogenized)were selected and extruded at a low extrusion temperature of 220℃and a low extrusion ratio of 4.The microstructure and mechanical properties of the two extruded AZ80 alloys were investigated.The results show that homogenized-extruded(HE)sample exhibits higher strength than the cast-extruded(CE)sample,which is mainly attributed to the high number density of fine dynamic precipitates and the high fraction of recrystallized ultrafine grains.Compared to the coarse compounds existing in CE sample,the fine dynamical precipitates of Mg17(Al,Zn)12form in the HE sample can effectively promote the dynamical recrystallization during extrusion,while they exhibit a similar effect on the size and orientation of the recrystallized grains.These results can facilitate the designing of high-strength wrought magnesium alloys by rational microstructure construction.展开更多
The factors influencing the crystallization ratio of mold flux were researched by rapid cooling technolo gy, and the factors affecting crystallization temperature were studied by single thermocouple technique. The res...The factors influencing the crystallization ratio of mold flux were researched by rapid cooling technolo gy, and the factors affecting crystallization temperature were studied by single thermocouple technique. The results showed that the crystallization ratio of mold flux increases with the basicity and the content of Na2O, CaF2, Li2O and NaF, and decreases with the increase of the content of Al2O3, MgO, BaO, MnO and B2O3. However, the crystallization temperature of mold flux rises with the basicity and the content of NaF, Na2O and CaF2, and reduces with the increase of the content of Al2O3, MgO, BaO, MnO and B2O3. But for Li2O, crystallization temperature decreases firstly to a minimum value at 2%, and then increases gradually with the increase of Li2O.展开更多
It is useful for practical operation to study the rules of production of propylene by the catalytic conversion of heavy oil in FCC (fluid catalytic cracking). The effects of temperature and C/O ratio (catalyst to o...It is useful for practical operation to study the rules of production of propylene by the catalytic conversion of heavy oil in FCC (fluid catalytic cracking). The effects of temperature and C/O ratio (catalyst to oil weight ratio) on the distribution of the product and the yield of propylene were investigated on a micro reactor unit with two model catalysts, namely ZSM-5/Al2O3 and USY/Al2O3, and Fushun vacuum gas oil (VGO) was used as the feedstock. The conversion of heavy oil over ZSM-5 catalyst can be comparable to that of USY catalyst at high temperature and high C/O ratio. The rate of conversion of heavy oil using the ZSM-5 equilibrium catalyst is lower compared with the USY equilibrium catalyst under the general FCC conditions and this can be attributed to the poor steam ability of the ZSM-5 equilibrium catalyst. The difference in pore topologies of USY and ZSM-5 is the reason why the principal products for the above two catalysts is different, namely gasoline and liquid petroleum gas (LPG), repspectively. So the LPG selectivity, especially the propylene selectivity, may decline if USY is added into the FCC catalyst for maximizing the production of propylene. Increasing the C/O ratio is the most economical method for the increase of LPG yield than the increase of the temperature of the two model catalysts, because the loss of light oil is less in the former case. There is an inverse correlation between HTC (hydrogen transfer coefficient) and the yield of propylene, and restricting the hydrogen transfer reaction is the more important measure in increasing the yield of propylene of the ZSM-5 catalyst. The ethylene yield of ZSM-5/A1203 is higher, but the gaseous side products with low value are not enhanced when ZSM-5 catalyst is used. Moreover, for LPG and the end products, dry gas and coke, their ranges of reaction conditions to which their yields are dependent are different, and that of end products is more severe than that of LPG. So it is clear that maximizing LPG and propylene and restricting dry gas and coke can be both achieved via increasing the severity of reaction conditions among the range of reaction conditions which LPG yield is sensitive to.展开更多
The ion-to-electron temperature ratio is a good indicator of the processes involved in the plasma sheet.Observations have suggested that patchy reconnection and the resulting earthward bursty bulk flows(BBFs)transport...The ion-to-electron temperature ratio is a good indicator of the processes involved in the plasma sheet.Observations have suggested that patchy reconnection and the resulting earthward bursty bulk flows(BBFs)transport may be involved in causing the lower temperature ratios at smaller radial distances during southward IMF periods.In this paper,we estimate theoretically how a patchy magnetic reconnection electric field can accelerate ions and electrons differently.If both ions and electrons are non-adiabatically accelerated only once within each reconnection,the temperature ratio would be preserved.However,when reconnection occurs closer to the Earth where magnetic field lines are shorter,particles mirrored back from the ionosphere can cross the reconnection region more than once within one reconnection;and electrons,moving faster than ions,can have more crossings than do ions,leading to electrons being accelerated more than ions.Thus as particles are transported from tail to the near-Earth by BBFs through multiple reconnection,electrons should be accelerated by the reconnection electric field more times than are ions,which can explain the lower temperature ratios observed closer to the Earth.展开更多
Effects of NHj concentiation, solution/soil ratio and temperature on NH_4^+adsorption were studied in a Eum-Orthic Anthrosol. The slopes of the soil NH_4^+ adsorptionisotherms and the fitted n, the coefficient for the...Effects of NHj concentiation, solution/soil ratio and temperature on NH_4^+adsorption were studied in a Eum-Orthic Anthrosol. The slopes of the soil NH_4^+ adsorptionisotherms and the fitted n, the coefficient for the adsorption intensity, and kappa, the coefficientrelated to adsorption capacity, of the Freundlich equation increased with increasing solution/soilratio (SSR) and with decreasing temperature (T). For the range of experimental conditions, the valueof delta q/delta c, the rate of change of the amount of NH_4^+ adsorbed in the soil solid phase (q)with respect to the equilibrium concentration of NH_4^+ in soil solution (c), was 0.840, indicatingthat q increased with increasing c. From 2 to 45 deg C, delta q/delta SSR, the rate of change of qwith respect to SSR, decreased from 2.598 to 1.996, showing that q increased with increasing SSR,while its increasing rate decreased with temperature. From SSR 1:1 to 20:1, delta q/delta T, therate of change of q with respect to T, decreased from -- 0.095 to -- 0.361, indicating that qdecreased with increasing temperature, and at the same time the negative effect of temperaturebecame larger as SSR increased. Thus under the experimental conditions the order of importance indetermining the amount of NH_4^+ adsorbed in the soil solid phase was delta q/delta SSR > deltaq/delta c > |delta q/delta T|, indicating that the greatest effect on the amount of NH_4^+ adsorbedwas with the solution/soil ratio; the equilibrium concentration of NH_4^+ had a lesser effect; andtemperature had the least effect.展开更多
A new and practical fluorescence temperature detecting system based on fluorescence intensity ratio was proposed . The background theory of fluorescence intensity-ratio method was presented simply. And the characters ...A new and practical fluorescence temperature detecting system based on fluorescence intensity ratio was proposed . The background theory of fluorescence intensity-ratio method was presented simply. And the characters of rare earth doped samples were detailed. The erbium-doped fiber was chosen as the sensing element. The energy levels of 2H11/2 and 4S3/2 are responsible for the emission of radiation at approximately 530 and 555 nm. The erbium-doped (960 ppm) fiber of length 20 cm and core diameter 3.2μm was used as the sensing part. A silica photodiode transfers the fluorescence signal to electric signal, then the ratio of the average of the two different signals was calculated by the computer and the temperature was obtained. The ratio R of the intensity resulting from the transition between the two levels varies proportionly with temperature interval from 293 K to 373 K. The sensitivity of the sensor is approximately 0.05 K-1.展开更多
The ion-to-electron temperature ratio is a good indicator of the processes involved in solar wind plasma entering and being transported inside Earth’s plasma sheet.In this study,we have demonstrated that patchy magne...The ion-to-electron temperature ratio is a good indicator of the processes involved in solar wind plasma entering and being transported inside Earth’s plasma sheet.In this study,we have demonstrated that patchy magnetic reconnection has the potential to preserve the ion-to-electron temperature ratio under certain conditions.If the charged particles are non-adiabatically accelerated no more than once in a single reconnection,the temperature ratio would be preserved;on the other hand,this ratio would not be preserved if they are accelerated multiple times.Consequently,under a northward interplanetary magnetic field(IMF)condition,the reconnection in the nonlinear phase of the Kelvin-Helmholtz instability is the dominant process for solar-originated plasma entering the Earth’s magnetosphere,and the ion-to-electron temperature ratio is preserved inside the plasma sheet.When the direction of the IMF is southward,the reflection of electrons from the magnetic mirror point,and subsequent multiple non-adiabatic accelerations at the reconnection site,are the primary reasons for the observed low ion-to-electron temperature ratio close to the Earth at midnight.While reconnections that occur in the night-side far tail might preserve the ratio,turbulence on the boundaries of the bursty bulk flows(BBFs)could change the ratio in the far tail through the violation of the frozen-in condition of the ions.The plateau in the contour of the calculated ion-to-electron temperature ratio in the down tail distance between 40 and 60 Earth radii may explain the strong correlation between the ion and electron temperatures in the outer central plasma sheet,which has not been clearly understood till date.展开更多
Frost heave in seasonally frozen regions is a one-dimensional process that could severely damage infrastructure subgrades.Stress state,temperature and water migration are important factors for frost heave.This work in...Frost heave in seasonally frozen regions is a one-dimensional process that could severely damage infrastructure subgrades.Stress state,temperature and water migration are important factors for frost heave.This work investigated the effects of soil temperature and volumetric water content on the transient frost heave ratio during the freezing of saturated silty clay in an open system and analyzed the relationships between the transient frost heave ratio and freezing rate and between temperature gradient and frost heave rate.The results show that the frost heave ratio,frost heave rate,and freezing rate are positively correlated with the temperature gradient since the temperature gradient drives the water migration during freezing,indicating the transient temperature gradient could be used to evaluate the frost heave of saturated silty clay.The transient freezing rate and transient frost heave ratio are logarithmically related to the transient frost heave ratio and transient temperature gradient,respectively.The effects of transient temperature gradient on frost heave are the principal mechanism responsible for different frost heave characteristics and uneven frost heave along a subgrade of the same soil type.展开更多
This study investigated the possibility of using high-temperature and high-pressure schedules to treat Pinus massoniana wood in order to reduce its oil content. We discuss the effect of drying temperature, absolute pr...This study investigated the possibility of using high-temperature and high-pressure schedules to treat Pinus massoniana wood in order to reduce its oil content. We discuss the effect of drying temperature, absolute pressure and the holding time on the deresination ratio in R massoniana wood and establish a model for the deresination ratio as a function of drying temperature, absolute pressure and holding time. The results show that the deresination ratio in- creased from 7.14% to 87.04% when the temperature increased from 150 to 200℃, the absolute pressure from 0.1 to 0.6 MPa and the holding time from 1 to 3 h. The optimal model for the deresination ratio (Y) with drying temperature (t), absolute pressure (p) and holding time (r) is: Y = 0.284t + 113.424p + 3.518r - 42.486, with a coefficient of determina- tion (R2) of 0.930. Compared with drying temperature and holding time, absolute pressure plays the more significant role in the deresination process. This study could provide a theoretical basis to the practical production of R massoniana wood.展开更多
Evapotranspiration in forests has been researched for a long time because it serves an important role in water resource issues and biomass production. By applying the reciprocal analysis based on the Bowen ratio conce...Evapotranspiration in forests has been researched for a long time because it serves an important role in water resource issues and biomass production. By applying the reciprocal analysis based on the Bowen ratio concept to the canopy surface, the sum result of sensible and latent heat fluxes, i.e., actual evapotranspiration (ET), is estimated from engineering aspect using the net radiation (Rn) and heat flux into the ground (G). The new method uses air temperature and humidity at a single height by determining the relative humidity (rehs) using the canopy temperature (Ts). The validity of the method is confirmed by the latent heat flux (lE) and sensible heat flux (H) observed by mean of eddy covariance method. The heat imbalance is corrected by multiple regression analysis. The temporal change of lE and H at the canopy surface is clarified using hourly and yearly data. Furthermore, the observed and estimated monthly evapotranspiration of the sites are compared. The research is conducted using hourly data and the validation of the method is conducted using observed covariance at five sites in the world using FLUXNET.展开更多
This paper addresses the effects of stress ratio on the temperature-dependent high-cycle fatigue (HCF) properties of alloy steels 2CrMo and 9CrCo, which suffer from substantial vibrational loading at small stress am...This paper addresses the effects of stress ratio on the temperature-dependent high-cycle fatigue (HCF) properties of alloy steels 2CrMo and 9CrCo, which suffer from substantial vibrational loading at small stress amplitude, high stress ratio, and high frequency in the high-temperature environments in which they fimcfion as blade and rotor spindle materials in advanced gas or steam turbine engines. Fatigue tests were performed on alloy steels 2CrMo and 9CrCo subjected to constant-amplitude loading at four stress ratios and at four and three temperatures, respectively, to determine their temperature-dependent HCF properties. The interaction mechanisms between high temperature and stress ratio were deduced and compared with each other on the basis of the results of fractographic analysis. A phenomenological model was developed to evaluate the effects of stress ratio on the temperature-dependent HCF properties of alloy steels 2CrMo and 9CrCo. Good correlation was achieved between the predictions and actual experiments, demonstrating the practical and effective use of the proposed method.展开更多
The relationship between the partition ratio at a solid-liquid interface and the temperature gradient or the external force field has been theoretically analysed.It is shown that under the influence of a temperature g...The relationship between the partition ratio at a solid-liquid interface and the temperature gradient or the external force field has been theoretically analysed.It is shown that under the influence of a temperature gradient or an external force field,the partition ratio at a solid-liquid interface will deviate from the equilibrium value.展开更多
By using multi-grid method, the simultaneous Reynolds, elasticily, film-thickness,rheology, energy and thermal interface temperature equations are solved, and the numerical solution of line-ontact thermal EHL is succe...By using multi-grid method, the simultaneous Reynolds, elasticily, film-thickness,rheology, energy and thermal interface temperature equations are solved, and the numerical solution of line-ontact thermal EHL is successfully obtained and presented in this paper.In addition, the influence of sliding/rolling ratio on the distribution of temperature within the film and on the solid surface. minimum film thickness and traction coefficient are also studied. The results show that the influence of temperature on film thickness is significant and unnegligible, All mentioned above may provide a basis for further investigation of thermal EHL of helical gears.展开更多
ZnO nanocrystalline films are prepared on Si substrates at different temperatures by using metal-organic chemical vapour deposition (MOCVD). It is observed that when the growth temperature is low, the stoichiometric...ZnO nanocrystalline films are prepared on Si substrates at different temperatures by using metal-organic chemical vapour deposition (MOCVD). It is observed that when the growth temperature is low, the stoichiometric ratio between Zn and 0 atoms has a large deviation from the ideal ratio of 1:1. The ZnO grains in the film have small sizes and are not well crystallized, resulting in a poor photoluminescence (PL) property. When the temperature is increased to an appropriate value, the Zn/O ratio becomes optimized, and most of Zn and 0 atoms are combined into Zn-O bonds. Then the film has good crystal quality and good PL property. If the temperature is fairly high, the interracial mutual diffusion of atoms between the substrate and the epitaxial film appears, and the desorption process of the oxygen atoms is enhanced. However, it has no effect on the film property. The film still has the best crystal quality and PL property.展开更多
In order to study the relation between martensitic transformation temperature range AT (where AT is the difference between martensitic transformation start and finish temperature) and lattice distortion ratio (c/a...In order to study the relation between martensitic transformation temperature range AT (where AT is the difference between martensitic transformation start and finish temperature) and lattice distortion ratio (c/a) of martensitic transforma~ tion, a series of Ni46Mnz8_xGa22Co4Cux (x = 2-5) Heusler alloys is prepared by arc melting method. The vibration sample magnetometer (VSM) experiment results show that AT increases when x 〉 4 and decreases when x 〈 4 with x increasing, and the minimal AT (about 1 K) is found at x = 4. Ambient X-ray diffraction (XRD) results show that AT is proportional to c/a for non-modulated Ni46Mn28_xGa22Co4Cux (x = 2-5) martensites. The relation between AT and c/a is in agreement with the analysis result obtained from crystal lattice mismatch model. About 1000-ppm strain is found for the sample at x = 4 when heating temperature increases from 323 K to 324 K. These properties, which allow a modulation of AT and temperature-induced strain during martensitic transformation, suggest Ni46Mn24Ga22Co4Cu4 can be a promising actuator and sensor.展开更多
基金the National Natural Science Foundation of China(Nos.52368032 and 51808272)the China Postdoctoral Science Foundation(No.2023M741455)+1 种基金the Tianyou Youth Talent Lift Program of Lanzhou Jiaotong UniversityGansu Province Youth Talent Support Project(No.GXH20210611-10)。
文摘The effects of the water-cement ratio and the molding temperature on the hydration heat of cement were investigated with semi-adiabatic calorimetry.The specimens were prepared with water-cement ratios of 0.31,0.38,and 0.45,and the molding temperature was specified at 10 and 20℃.The experimental results show that,as the water-binder ratio increases,the value of the second temperature peak on the temperature curve of the cement paste decreases,and the age at which the peak appears is delayed.The higher the water-cement ratio,the higher the hydration heat release in the early period of cement hydration,but this trend reverses in the late period.There are intersection points of the total hydration heat curve of the cement pastes under the influence of the water-cement ratio,and this law can be observed at both molding temperatures.With the increase in the molding temperature,the age of the second temperature peak on the temperature curve of the cement paste will advance,but the temperature peak will decrease.The higher the molding temperature,the earlier the acceleration period of the cement hydration began,and the larger the hydration heat of the cement in the early stage,but the smaller the total heat in the late period.A subsection function calculation model of the hydration heat,which was based on the existing models,was proposed in order to predict the heat of the hydration of the concrete.
文摘Previously, we presented several empirical equations using the cosmic microwave background (CMB) temperature. Next, we propose an empirical equation for the fine-structure constant. Considering the compatibility among these empirical equations, the CMB temperature (T<sub>c</sub>) and gravitational constant (G) were calculated to be 2.726312 K and 6.673778 × 10<sup>−11</sup> m<sup>3</sup>∙kg<sup>−1</sup>∙s<sup>−2</sup>, respectively. Every equation could be explained in terms of the Compton length of an electron (λ<sub>e</sub>), the Compton length of a proton (λ<sub>p</sub>) and a. Furthermore, every equation could also be explained in terms of Avogadro’s number and the number of electrons in 1 C. However, the ratio of the gravitational force to the electric force cannot be uniquely determined when the unit of the Planck constant (Js) is changed. In this study, we showed that every equation can be described in terms of Planck constant. From the assumption of minimum mass, the ratio of gravitational force to electric force could be elucidated.
基金supported by the National Science and Technology Major Project,China(No.2019-VI-0004-0118)the National Natural Science Foundation of China(No.51771152)the National Key R&D Program of China(No.2018YFB1106800)。
文摘Microstructure,texture,and mechanical properties of the extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy were investigated at different extrusion temperatures(260 and 320℃),extrusion ratios(10:1,15:1,and 30:1),and extrusion speeds(3 and 6 mm/s).The experimental results exhibited that the grain sizes after extrusion were much finer than that of the homogenized alloy,and the second phase showed streamline distribution along the extrusion direction(ED).With extrusion temperature increased from 260 to 320℃,the microstructure,texture,and mechanical properties of alloys changed slightly.The dynamic recrystallization(DRX)degree and grain sizes enhanced as the extrusion ratio increased from 10:1 to 30:1,and the strength gradually decreased but elongation(EL)increased.With the extrusion speed increased from 3 to 6 mm/s,the grain sizes and DRX degree increased significantly,and the samples presented the typical<2111>-<1123>rare-earth(RE)textures.The alloy extruded at 260℃ with extrusion ratio of 10:1 and extrusion speed of 3 mm/s showed the tensile yield strength(TYS)of 213 MPa and EL of 30.6%.After quantitatively analyzing the contribution of strengthening mechanisms,it was found that the grain boundary strengthening and dislocation strengthening played major roles among strengthening contributions.These results provide some guidelines for enlarging the industrial application of extruded Mg-RE alloy.
文摘Compound casting is an efficient method for bonding dissimilar metals,in which a dramatic reaction can occur between the melt and solid.The centrifugal casting process,a type of compound casting,was applied to cast Al/Mg dissimilar bimetals.Magnesium melt was poured at 700 °C,with melt-to-solid volume ratios(Vm/Vs) of 1.5 and 3,into a preheated hollow aluminum cylinder.The preheating temperatures of the solid part were 320,400,and 450 °C,and the constant rotational speed was 1,600 rpm.The cast parts were kept inside the casting machine until reaching the cooling temperature of 150 °C.The result showed that an increase in preheating temperature from 320 to 450 °C led to an enhanced reaction layer thickness.In addition,an increase in the Vm/Vs from 1.5 to 3 resulted in raising the interface thickness from 1.2 to 1.8 mm.Moreover,the interface was not continuously formed when a Vm/Vs of 3 was selected.In this case,the force of contraction overcame the resultant acting force on the interface.An interface formed at the volume ratio of 1.5 was examined using scanning electron microscopy(SEM) equipped with energy-dispersive X-ray spectroscopy(EDS),and the results demonstrated the formation of Al_(3)Mg_(2),Al_(12)Mg_(17) and(δ+Al_(12)Mg_(17)) eutectic structures in the interface.
文摘Previously, we presented several empirical equations using the cosmic microwave background (CMB) temperature. Next, we propose an empirical equation for the fine-structure constant. Considering the compatibility among these empirical equations, the CMB temperature (Tc) and gravitational constant (G) were calculated to be 2.726312 K and 6.673778 × 10−11 m3∙kg−1∙s−2, respectively. Every equation can be explained numerically in terms of the Compton length of an electron (λe), the Compton length of a proton (λp) and α. Furthermore, every equation can also be explained in terms of the Avogadro number and the number of electrons at 1 C. We show that every equation can be described in terms of the Planck constant. Then, the ratio of the gravitational force to the electric force can be uniquely determined with the assumption of minimum mass. In this report, we describe the algorithms used to explain these equations in detail. Thus, there are no dimension mismatch problems.
基金Supported by National Natural Science Foundation of China(Grant Nos.52171121,51971151,52201131 and 52201132)Liaoning Provincial Xingliao Program of China(Grant No.XLYC1907083)+1 种基金Liaoning Provincial Natural Science Foundation of China(Grant No.2022-NLTS-18-01)Open Foundation of Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education of China(Grant No.HEU10202205).
文摘Magnesium(Mg)alloys are the lightest metal structural material for engineering applications and therefore have a wide market of applications.However,compared to steel and aluminum alloys,Mg alloys have lower mechanical properties,which greatly limits their application.Extrusion is one of the most important processing methods for Mg and its alloys.However,the effect of such a heterogeneous microstructure achieved at low temperatures on the mechanical properties is lacking investigation.In this work,commercial AZ80 alloys with different initial microstructures(as-cast and as-homogenized)were selected and extruded at a low extrusion temperature of 220℃and a low extrusion ratio of 4.The microstructure and mechanical properties of the two extruded AZ80 alloys were investigated.The results show that homogenized-extruded(HE)sample exhibits higher strength than the cast-extruded(CE)sample,which is mainly attributed to the high number density of fine dynamic precipitates and the high fraction of recrystallized ultrafine grains.Compared to the coarse compounds existing in CE sample,the fine dynamical precipitates of Mg17(Al,Zn)12form in the HE sample can effectively promote the dynamical recrystallization during extrusion,while they exhibit a similar effect on the size and orientation of the recrystallized grains.These results can facilitate the designing of high-strength wrought magnesium alloys by rational microstructure construction.
文摘The factors influencing the crystallization ratio of mold flux were researched by rapid cooling technolo gy, and the factors affecting crystallization temperature were studied by single thermocouple technique. The results showed that the crystallization ratio of mold flux increases with the basicity and the content of Na2O, CaF2, Li2O and NaF, and decreases with the increase of the content of Al2O3, MgO, BaO, MnO and B2O3. However, the crystallization temperature of mold flux rises with the basicity and the content of NaF, Na2O and CaF2, and reduces with the increase of the content of Al2O3, MgO, BaO, MnO and B2O3. But for Li2O, crystallization temperature decreases firstly to a minimum value at 2%, and then increases gradually with the increase of Li2O.
文摘It is useful for practical operation to study the rules of production of propylene by the catalytic conversion of heavy oil in FCC (fluid catalytic cracking). The effects of temperature and C/O ratio (catalyst to oil weight ratio) on the distribution of the product and the yield of propylene were investigated on a micro reactor unit with two model catalysts, namely ZSM-5/Al2O3 and USY/Al2O3, and Fushun vacuum gas oil (VGO) was used as the feedstock. The conversion of heavy oil over ZSM-5 catalyst can be comparable to that of USY catalyst at high temperature and high C/O ratio. The rate of conversion of heavy oil using the ZSM-5 equilibrium catalyst is lower compared with the USY equilibrium catalyst under the general FCC conditions and this can be attributed to the poor steam ability of the ZSM-5 equilibrium catalyst. The difference in pore topologies of USY and ZSM-5 is the reason why the principal products for the above two catalysts is different, namely gasoline and liquid petroleum gas (LPG), repspectively. So the LPG selectivity, especially the propylene selectivity, may decline if USY is added into the FCC catalyst for maximizing the production of propylene. Increasing the C/O ratio is the most economical method for the increase of LPG yield than the increase of the temperature of the two model catalysts, because the loss of light oil is less in the former case. There is an inverse correlation between HTC (hydrogen transfer coefficient) and the yield of propylene, and restricting the hydrogen transfer reaction is the more important measure in increasing the yield of propylene of the ZSM-5 catalyst. The ethylene yield of ZSM-5/A1203 is higher, but the gaseous side products with low value are not enhanced when ZSM-5 catalyst is used. Moreover, for LPG and the end products, dry gas and coke, their ranges of reaction conditions to which their yields are dependent are different, and that of end products is more severe than that of LPG. So it is clear that maximizing LPG and propylene and restricting dry gas and coke can be both achieved via increasing the severity of reaction conditions among the range of reaction conditions which LPG yield is sensitive to.
基金supported by the National Nature Science Foundation of China (Grant NSFC41374179)supported by NASA (NNX16AJ83G)
文摘The ion-to-electron temperature ratio is a good indicator of the processes involved in the plasma sheet.Observations have suggested that patchy reconnection and the resulting earthward bursty bulk flows(BBFs)transport may be involved in causing the lower temperature ratios at smaller radial distances during southward IMF periods.In this paper,we estimate theoretically how a patchy magnetic reconnection electric field can accelerate ions and electrons differently.If both ions and electrons are non-adiabatically accelerated only once within each reconnection,the temperature ratio would be preserved.However,when reconnection occurs closer to the Earth where magnetic field lines are shorter,particles mirrored back from the ionosphere can cross the reconnection region more than once within one reconnection;and electrons,moving faster than ions,can have more crossings than do ions,leading to electrons being accelerated more than ions.Thus as particles are transported from tail to the near-Earth by BBFs through multiple reconnection,electrons should be accelerated by the reconnection electric field more times than are ions,which can explain the lower temperature ratios observed closer to the Earth.
基金Project supported by the National Natural Science Foundation of China (No. 49901009).
文摘Effects of NHj concentiation, solution/soil ratio and temperature on NH_4^+adsorption were studied in a Eum-Orthic Anthrosol. The slopes of the soil NH_4^+ adsorptionisotherms and the fitted n, the coefficient for the adsorption intensity, and kappa, the coefficientrelated to adsorption capacity, of the Freundlich equation increased with increasing solution/soilratio (SSR) and with decreasing temperature (T). For the range of experimental conditions, the valueof delta q/delta c, the rate of change of the amount of NH_4^+ adsorbed in the soil solid phase (q)with respect to the equilibrium concentration of NH_4^+ in soil solution (c), was 0.840, indicatingthat q increased with increasing c. From 2 to 45 deg C, delta q/delta SSR, the rate of change of qwith respect to SSR, decreased from 2.598 to 1.996, showing that q increased with increasing SSR,while its increasing rate decreased with temperature. From SSR 1:1 to 20:1, delta q/delta T, therate of change of q with respect to T, decreased from -- 0.095 to -- 0.361, indicating that qdecreased with increasing temperature, and at the same time the negative effect of temperaturebecame larger as SSR increased. Thus under the experimental conditions the order of importance indetermining the amount of NH_4^+ adsorbed in the soil solid phase was delta q/delta SSR > deltaq/delta c > |delta q/delta T|, indicating that the greatest effect on the amount of NH_4^+ adsorbedwas with the solution/soil ratio; the equilibrium concentration of NH_4^+ had a lesser effect; andtemperature had the least effect.
文摘A new and practical fluorescence temperature detecting system based on fluorescence intensity ratio was proposed . The background theory of fluorescence intensity-ratio method was presented simply. And the characters of rare earth doped samples were detailed. The erbium-doped fiber was chosen as the sensing element. The energy levels of 2H11/2 and 4S3/2 are responsible for the emission of radiation at approximately 530 and 555 nm. The erbium-doped (960 ppm) fiber of length 20 cm and core diameter 3.2μm was used as the sensing part. A silica photodiode transfers the fluorescence signal to electric signal, then the ratio of the average of the two different signals was calculated by the computer and the temperature was obtained. The ratio R of the intensity resulting from the transition between the two levels varies proportionly with temperature interval from 293 K to 373 K. The sensitivity of the sensor is approximately 0.05 K-1.
文摘The ion-to-electron temperature ratio is a good indicator of the processes involved in solar wind plasma entering and being transported inside Earth’s plasma sheet.In this study,we have demonstrated that patchy magnetic reconnection has the potential to preserve the ion-to-electron temperature ratio under certain conditions.If the charged particles are non-adiabatically accelerated no more than once in a single reconnection,the temperature ratio would be preserved;on the other hand,this ratio would not be preserved if they are accelerated multiple times.Consequently,under a northward interplanetary magnetic field(IMF)condition,the reconnection in the nonlinear phase of the Kelvin-Helmholtz instability is the dominant process for solar-originated plasma entering the Earth’s magnetosphere,and the ion-to-electron temperature ratio is preserved inside the plasma sheet.When the direction of the IMF is southward,the reflection of electrons from the magnetic mirror point,and subsequent multiple non-adiabatic accelerations at the reconnection site,are the primary reasons for the observed low ion-to-electron temperature ratio close to the Earth at midnight.While reconnections that occur in the night-side far tail might preserve the ratio,turbulence on the boundaries of the bursty bulk flows(BBFs)could change the ratio in the far tail through the violation of the frozen-in condition of the ions.The plateau in the contour of the calculated ion-to-electron temperature ratio in the down tail distance between 40 and 60 Earth radii may explain the strong correlation between the ion and electron temperatures in the outer central plasma sheet,which has not been clearly understood till date.
基金supported by the National Natural Science Foundation of China(No.51808128)the Natural Science Foundation of Fujian Province(No.2022J01091)。
文摘Frost heave in seasonally frozen regions is a one-dimensional process that could severely damage infrastructure subgrades.Stress state,temperature and water migration are important factors for frost heave.This work investigated the effects of soil temperature and volumetric water content on the transient frost heave ratio during the freezing of saturated silty clay in an open system and analyzed the relationships between the transient frost heave ratio and freezing rate and between temperature gradient and frost heave rate.The results show that the frost heave ratio,frost heave rate,and freezing rate are positively correlated with the temperature gradient since the temperature gradient drives the water migration during freezing,indicating the transient temperature gradient could be used to evaluate the frost heave of saturated silty clay.The transient freezing rate and transient frost heave ratio are logarithmically related to the transient frost heave ratio and transient temperature gradient,respectively.The effects of transient temperature gradient on frost heave are the principal mechanism responsible for different frost heave characteristics and uneven frost heave along a subgrade of the same soil type.
基金supported by the Beijing Jointly Building Project of Key Discipline-the High Efficiency Utilization of Fast Growing Wood
文摘This study investigated the possibility of using high-temperature and high-pressure schedules to treat Pinus massoniana wood in order to reduce its oil content. We discuss the effect of drying temperature, absolute pressure and the holding time on the deresination ratio in R massoniana wood and establish a model for the deresination ratio as a function of drying temperature, absolute pressure and holding time. The results show that the deresination ratio in- creased from 7.14% to 87.04% when the temperature increased from 150 to 200℃, the absolute pressure from 0.1 to 0.6 MPa and the holding time from 1 to 3 h. The optimal model for the deresination ratio (Y) with drying temperature (t), absolute pressure (p) and holding time (r) is: Y = 0.284t + 113.424p + 3.518r - 42.486, with a coefficient of determina- tion (R2) of 0.930. Compared with drying temperature and holding time, absolute pressure plays the more significant role in the deresination process. This study could provide a theoretical basis to the practical production of R massoniana wood.
文摘Evapotranspiration in forests has been researched for a long time because it serves an important role in water resource issues and biomass production. By applying the reciprocal analysis based on the Bowen ratio concept to the canopy surface, the sum result of sensible and latent heat fluxes, i.e., actual evapotranspiration (ET), is estimated from engineering aspect using the net radiation (Rn) and heat flux into the ground (G). The new method uses air temperature and humidity at a single height by determining the relative humidity (rehs) using the canopy temperature (Ts). The validity of the method is confirmed by the latent heat flux (lE) and sensible heat flux (H) observed by mean of eddy covariance method. The heat imbalance is corrected by multiple regression analysis. The temporal change of lE and H at the canopy surface is clarified using hourly and yearly data. Furthermore, the observed and estimated monthly evapotranspiration of the sites are compared. The research is conducted using hourly data and the validation of the method is conducted using observed covariance at five sites in the world using FLUXNET.
基金supported by the National Natural Science Foundation of China(Nos.51375033 and 51405006)
文摘This paper addresses the effects of stress ratio on the temperature-dependent high-cycle fatigue (HCF) properties of alloy steels 2CrMo and 9CrCo, which suffer from substantial vibrational loading at small stress amplitude, high stress ratio, and high frequency in the high-temperature environments in which they fimcfion as blade and rotor spindle materials in advanced gas or steam turbine engines. Fatigue tests were performed on alloy steels 2CrMo and 9CrCo subjected to constant-amplitude loading at four stress ratios and at four and three temperatures, respectively, to determine their temperature-dependent HCF properties. The interaction mechanisms between high temperature and stress ratio were deduced and compared with each other on the basis of the results of fractographic analysis. A phenomenological model was developed to evaluate the effects of stress ratio on the temperature-dependent HCF properties of alloy steels 2CrMo and 9CrCo. Good correlation was achieved between the predictions and actual experiments, demonstrating the practical and effective use of the proposed method.
文摘The relationship between the partition ratio at a solid-liquid interface and the temperature gradient or the external force field has been theoretically analysed.It is shown that under the influence of a temperature gradient or an external force field,the partition ratio at a solid-liquid interface will deviate from the equilibrium value.
文摘By using multi-grid method, the simultaneous Reynolds, elasticily, film-thickness,rheology, energy and thermal interface temperature equations are solved, and the numerical solution of line-ontact thermal EHL is successfully obtained and presented in this paper.In addition, the influence of sliding/rolling ratio on the distribution of temperature within the film and on the solid surface. minimum film thickness and traction coefficient are also studied. The results show that the influence of temperature on film thickness is significant and unnegligible, All mentioned above may provide a basis for further investigation of thermal EHL of helical gears.
基金Project supported by the Natural Science Foundation of Shaanxi Province,China (Grant No. 2011JQ6015)the Natural Science Foundation of Shaanxi Provincial Educational Committee,China (Grant No. 09JK740)
文摘ZnO nanocrystalline films are prepared on Si substrates at different temperatures by using metal-organic chemical vapour deposition (MOCVD). It is observed that when the growth temperature is low, the stoichiometric ratio between Zn and 0 atoms has a large deviation from the ideal ratio of 1:1. The ZnO grains in the film have small sizes and are not well crystallized, resulting in a poor photoluminescence (PL) property. When the temperature is increased to an appropriate value, the Zn/O ratio becomes optimized, and most of Zn and 0 atoms are combined into Zn-O bonds. Then the film has good crystal quality and good PL property. If the temperature is fairly high, the interracial mutual diffusion of atoms between the substrate and the epitaxial film appears, and the desorption process of the oxygen atoms is enhanced. However, it has no effect on the film property. The film still has the best crystal quality and PL property.
基金Project supported by the National Key Project of Fundamental Research of China(Grant No.2012CB932304)the National Natural Science Foundation of China(Grant No.U1232210)
文摘In order to study the relation between martensitic transformation temperature range AT (where AT is the difference between martensitic transformation start and finish temperature) and lattice distortion ratio (c/a) of martensitic transforma~ tion, a series of Ni46Mnz8_xGa22Co4Cux (x = 2-5) Heusler alloys is prepared by arc melting method. The vibration sample magnetometer (VSM) experiment results show that AT increases when x 〉 4 and decreases when x 〈 4 with x increasing, and the minimal AT (about 1 K) is found at x = 4. Ambient X-ray diffraction (XRD) results show that AT is proportional to c/a for non-modulated Ni46Mn28_xGa22Co4Cux (x = 2-5) martensites. The relation between AT and c/a is in agreement with the analysis result obtained from crystal lattice mismatch model. About 1000-ppm strain is found for the sample at x = 4 when heating temperature increases from 323 K to 324 K. These properties, which allow a modulation of AT and temperature-induced strain during martensitic transformation, suggest Ni46Mn24Ga22Co4Cu4 can be a promising actuator and sensor.