Permanent deformation or rutting, one of the most important distresses in flexible pavements, has long been a problem in asphalt mixtures and thus a great deal of research has been focused on the development of a rheo...Permanent deformation or rutting, one of the most important distresses in flexible pavements, has long been a problem in asphalt mixtures and thus a great deal of research has been focused on the development of a rheological parameter that would address the rutting susceptibility of both unmodified and modified bituminous binders. In this research, three warm mix additives(Sasobit, Rheofalt and Zycotherm) were used to modify 60-70 penetration grade base binder. The rutting potential of both modified and unmodified binders were evaluated through the multiple stress creep recovery(MSCR)-based parameter, nonrecoverable compliance(Jnr) and recovery parameter(R). Several performance tests carried on stone matrix asphalt(SMA) mixtures comprising different nominal maximum aggregate sizes(NMASs, 9.5, 12.5 and 19 mm), like Marshall stability, dynamic and static creep and Hamburg wheel tracking tests to evaluate their rutting performance. The objective of this work is to correlate MSCR test results to performance. Results indicate that for the range of the gradations investigated in this work, increasing the nominal maximum aggregate size of the gradation would increase the permanent deformation resistance of the SMA mixture. Addition of 3% sasobit to base binder leads an increase in Jnr100 about 82%. Addition of 2% rheofalt to base binder leads an recovery increase of about 9.76 % and 27.44% in stress levels of 100 and 3200 Pa, respectively. The results reveal that rutting resistance of mixtures improves as Jnr decreases. The use of the MSCR test in the rutting characterization of bituminous binders is highly recommended based on the results of this work.展开更多
Deposited in plant cells and their intercellular space,phytoliths,a special form of silica,could be used to determine information on plant structure and physiology especially their size and content.With the hypothesis...Deposited in plant cells and their intercellular space,phytoliths,a special form of silica,could be used to determine information on plant structure and physiology especially their size and content.With the hypothesis that phytolith in plant would change under variable climate and environment,the dominant plant species in Songnen grassland,guinea grass(Leymus chinensis),was treated by an open-top chamber(OTC) to elevate CO2 concentration,infrared heaters,and artificial nitrogen(N) addition for three years from 2006–2008.Phytoliths were extracted by wet-ashing method and analyzed by variance analysis and so on.We found that the responses to elevated CO2 are complicated,and warming is positive while N addition is negative to the deposition of phytoliths in L.chinensis leaves.Especially,warming could reduce the negative impact of N addition on phytolith in L.chinensis.The short cell's taxonomic in graminea is significant because of no disappearance with simulated environmental changes.The phytolith originated in the long cell and plant intercellular space are more sensitive to elevated CO2 concentration,warming,and N addition,and could become some new indicators for environmental changes.In conclusion,different phytolith types have various responses to simulated warming,N addition and elevated CO2 concentration.展开更多
This study comprehensively evaluated different parameters based on tensile strength testing to assess the cracking resistance of asphalt mixtures subjected to aging and moisture conditioning.For this purpose,two sourc...This study comprehensively evaluated different parameters based on tensile strength testing to assess the cracking resistance of asphalt mixtures subjected to aging and moisture conditioning.For this purpose,two sources of aggregates were selected to produce hot and warm mix asphalt mixtures.Asphalt mixtures were subjected to short term and long term aging,three levels of moisture conditioning(freeze thaw cycles),and tested at two temperatures(15℃and 25℃).The load-displacement data was used to determine the fracture work density,fracture energy,toughness index,cracking resistance index,cracking tolerance index,and rate dependent cracking index.It was noticed that moisture conditioning increased the variability of the different parameters.The cracking tolerance index and rate dependent cracking index parameter had a much higher coefficient of variation(Co V)with a maximum value close to 50%.Indirect tensile strength,fracture energy,and fracture work density appropriately captured the effect of moisture on cracking resistance of mixtures.The cracking resistance index,cracking tolerance index,and rate dependent cracking index increased with an increase in the moisture conditioning level.The Statistical analysis showed that tensile strength,fracture work density,and fracture energy were significantly influenced by different aging and moisture conditions evaluated.Fracture energy showed better association with fatigue life of asphalt mixtures subjected to three freeze-thaw cycles compared to tensile strength.Further,the fatigue life prediction models showed that both indirect tensile strength and fracture energy significantly influence the fatigue life of asphalt mixtures subjected to aging and moisture conditioning.展开更多
文摘Permanent deformation or rutting, one of the most important distresses in flexible pavements, has long been a problem in asphalt mixtures and thus a great deal of research has been focused on the development of a rheological parameter that would address the rutting susceptibility of both unmodified and modified bituminous binders. In this research, three warm mix additives(Sasobit, Rheofalt and Zycotherm) were used to modify 60-70 penetration grade base binder. The rutting potential of both modified and unmodified binders were evaluated through the multiple stress creep recovery(MSCR)-based parameter, nonrecoverable compliance(Jnr) and recovery parameter(R). Several performance tests carried on stone matrix asphalt(SMA) mixtures comprising different nominal maximum aggregate sizes(NMASs, 9.5, 12.5 and 19 mm), like Marshall stability, dynamic and static creep and Hamburg wheel tracking tests to evaluate their rutting performance. The objective of this work is to correlate MSCR test results to performance. Results indicate that for the range of the gradations investigated in this work, increasing the nominal maximum aggregate size of the gradation would increase the permanent deformation resistance of the SMA mixture. Addition of 3% sasobit to base binder leads an increase in Jnr100 about 82%. Addition of 2% rheofalt to base binder leads an recovery increase of about 9.76 % and 27.44% in stress levels of 100 and 3200 Pa, respectively. The results reveal that rutting resistance of mixtures improves as Jnr decreases. The use of the MSCR test in the rutting characterization of bituminous binders is highly recommended based on the results of this work.
基金Under the auspices of National Natural Science Foundation of China(No.40971116,41471164,31170303,31270366)Ministry of Environmental Protection Foundation for Public Welfare Project(No.201109067)National Undergraduate Training Programs for Innovation and Entrepreneurship(No.201410200074)
文摘Deposited in plant cells and their intercellular space,phytoliths,a special form of silica,could be used to determine information on plant structure and physiology especially their size and content.With the hypothesis that phytolith in plant would change under variable climate and environment,the dominant plant species in Songnen grassland,guinea grass(Leymus chinensis),was treated by an open-top chamber(OTC) to elevate CO2 concentration,infrared heaters,and artificial nitrogen(N) addition for three years from 2006–2008.Phytoliths were extracted by wet-ashing method and analyzed by variance analysis and so on.We found that the responses to elevated CO2 are complicated,and warming is positive while N addition is negative to the deposition of phytoliths in L.chinensis leaves.Especially,warming could reduce the negative impact of N addition on phytolith in L.chinensis.The short cell's taxonomic in graminea is significant because of no disappearance with simulated environmental changes.The phytolith originated in the long cell and plant intercellular space are more sensitive to elevated CO2 concentration,warming,and N addition,and could become some new indicators for environmental changes.In conclusion,different phytolith types have various responses to simulated warming,N addition and elevated CO2 concentration.
文摘This study comprehensively evaluated different parameters based on tensile strength testing to assess the cracking resistance of asphalt mixtures subjected to aging and moisture conditioning.For this purpose,two sources of aggregates were selected to produce hot and warm mix asphalt mixtures.Asphalt mixtures were subjected to short term and long term aging,three levels of moisture conditioning(freeze thaw cycles),and tested at two temperatures(15℃and 25℃).The load-displacement data was used to determine the fracture work density,fracture energy,toughness index,cracking resistance index,cracking tolerance index,and rate dependent cracking index.It was noticed that moisture conditioning increased the variability of the different parameters.The cracking tolerance index and rate dependent cracking index parameter had a much higher coefficient of variation(Co V)with a maximum value close to 50%.Indirect tensile strength,fracture energy,and fracture work density appropriately captured the effect of moisture on cracking resistance of mixtures.The cracking resistance index,cracking tolerance index,and rate dependent cracking index increased with an increase in the moisture conditioning level.The Statistical analysis showed that tensile strength,fracture work density,and fracture energy were significantly influenced by different aging and moisture conditions evaluated.Fracture energy showed better association with fatigue life of asphalt mixtures subjected to three freeze-thaw cycles compared to tensile strength.Further,the fatigue life prediction models showed that both indirect tensile strength and fracture energy significantly influence the fatigue life of asphalt mixtures subjected to aging and moisture conditioning.