期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Aircraft Observations of Electrical Conductivity in Warm Clouds 被引量:1
1
作者 P.Ernest Raj P. C. S. Devara +1 位作者 A. M. Selvam A. S. R. Murty 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1993年第1期95-102,共8页
Aircraft observations of electrical conductivity and cloud microphsical, dynamical and other electrical parameters were made in warm stratocumulus and cumulus clouds forming during the summer monsoon seasons (June-Sep... Aircraft observations of electrical conductivity and cloud microphsical, dynamical and other electrical parameters were made in warm stratocumulus and cumulus clouds forming during the summer monsoon seasons (June-September) of 1983 and 1985 in the Deccan Plateau region, India. A Gerdien type cylindrical condenser was used for the measurement of electrical conductivity. The variations in the electrical conductivity are observed to be closely associated with the updrafts and downdrafts in the cloud, liquid water content, cloud droplet charge and corona discharge current. The value of electrical conductivity in warm clouds is found to be in the order of 10-12 ohm-1 m-1 which is two orders higher than that observed in clear-air at cloud-base levels in some regions by other investigators.Classical static electricity concepts predict reduced conductivity values inside clouds. Cloud electrical conductivity measurements, particularly in warm clouds are few and the results are contradictory. The recently identified mechanism of vertical mixing in clouds lends support to convective charge separation mechanism with inherent larger than clear-air values for cloud electrical conductivity and therefore consistent with the measurements reported herein. 展开更多
关键词 Aircraft Observations of Electrical Conductivity in warm clouds
下载PDF
Aircraft Measurements of Cloud–Aerosol Interaction over East Inner Mongolia 被引量:4
2
作者 Yuhuan Lü Hengchi LEI Jiefan YANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第8期983-992,共10页
To investigate the potential effects of aerosols on the microphysical properties of warm clouds, airborne observational data collected from 2009 to 2011 in Tongliao, Inner Mongolia, China, were statistically analyzed ... To investigate the potential effects of aerosols on the microphysical properties of warm clouds, airborne observational data collected from 2009 to 2011 in Tongliao, Inner Mongolia, China, were statistically analyzed in this study. The results demonstrated that the vertical distribution of the aerosol number concentration(N_a) was similar to that of the clean rural continent. The average aerosol effective diameter(D_e) was maintained at approximately 0.4 μm at all levels. The data obtained during cloud penetrations showed that there was a progressive increase in the cloud droplet concentration(N_c) and liquid water content(LWC) from outside to inside the clouds, while the Nawas negatively related to the Ncand LWC at the same height. The fluctuation of the N_a, Ncand LWC during cloud penetration was more obvious under polluted conditions(Type 1) than under clean conditions(Type 2). Moreover, the wet scavenging of cloud droplets had a significant impact on the accumulation mode of aerosols, especially on particles with diameters less than 0.4 μm. The minimum wet scavenging coefficient within the cloud was close to 0.02 under Type 1 conditions, while it increased to 0.1 under Type 2 conditions,which proved that the cloud wet scavenging effect under Type 1 conditions was stronger than that under Type 2 conditions.Additionally, cloud droplet spectra under Type 1 conditions were narrower, and their horizontal distributions were more homogeneous than those under Type 2 conditions. 展开更多
关键词 aircraft observation aerosol warm cloud microphysical properties
下载PDF
Cloud Radiative Effects and Changes Simulated by the Coupled Model Intercomparison Project Phase 5 Models
3
作者 Sun-Hee SHIN Ok-Yeon KIM +1 位作者 Dongmin KIM Myong-In LEE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第7期859-876,共18页
Using 32 CMIP5(Coupled Model Intercomparison Project Phase 5) models, this study examines the veracity in the simulation of cloud amount and their radiative effects(CREs) in the historical run driven by observed e... Using 32 CMIP5(Coupled Model Intercomparison Project Phase 5) models, this study examines the veracity in the simulation of cloud amount and their radiative effects(CREs) in the historical run driven by observed external radiative forcing for 1850-2005, and their future changes in the RCP(Representative Concentration Pathway) 4.5 scenario runs for2006-2100. Validation metrics for the historical run are designed to examine the accuracy in the representation of spatial patterns for climatological mean, and annual and interannual variations of clouds and CREs. The models show large spread in the simulation of cloud amounts, specifically in the low cloud amount. The observed relationship between cloud amount and the controlling large-scale environment are also reproduced diversely by various models. Based on the validation metrics,four models-ACCESS1.0, ACCESS1.3, Had GEM2-CC, and Had GEM2-ES-are selected as best models, and the average of the four models performs more skillfully than the multimodel ensemble average.All models project global-mean SST warming at the increase of the greenhouse gases, but the magnitude varies across the simulations between 1 and 2 K, which is largely attributable to the difference in the change of cloud amount and distribution. The models that simulate more SST warming show a greater increase in the net CRE due to reduced low cloud and increased incoming shortwave radiation, particularly over the regions of marine boundary layer in the subtropics. Selected best-performing models project a significant reduction in global-mean cloud amount of about-0.99% K^-1and net radiative warming of 0.46 W m^-2K^-1, suggesting a role of positive feedback to global warming. 展开更多
关键词 warming cloud radiative historical CMIP interannual greenhouse ACCESS oceans seasonal
下载PDF
Underestimation of Oceanic Warm Cloud Occurrences by the Cloud Profiling Radar Aboard Cloud Sat 被引量:1
4
作者 刘东阳 刘奇 周伶俐 《Journal of Meteorological Research》 SCIE CSCD 2015年第4期576-593,共18页
The Cloud Profiling Radar (CPR) onboard CloudSat is an active sensor specifically dedicated to cloud detection. Compared to passive remote sensors, CPR plays a unique role in investigating the occurrence of multi-la... The Cloud Profiling Radar (CPR) onboard CloudSat is an active sensor specifically dedicated to cloud detection. Compared to passive remote sensors, CPR plays a unique role in investigating the occurrence of multi-layer clouds and depicting the internal vertical structure of clouds. However, owing to contamination from ground clutter, CPR reflectivity signals are invalid in the lowest 1 km above the surface, leading to numerous missed detections of warm clouds. In this study, by using 1-yr CPR and MODIS (Moderate Resolution Imaging Spectroradiometer) synchronous data, those CPR-missed oceanic warm clouds that are identified as cloudy by MODIS are examined. It is demonstrated that CPR severely underestimates the occurrence of oceanic warm clouds, with a global-average miss rate of about 0.43. Over the tropical and subtropical oceans, the CPR-missed clouds tend to occur in regions with relatively low sea surface temperature. CPR misses almost all warm clouds with cloud tops lower than 1 km, and the miss rate reduces with increasing cloud top. As for clouds with cloud tops higher than 2 kin, the negative bias of CPR-captured warm cloud occurrence falls below 3%. The cloud top height of CPR-missed warm clouds ranges from 0.6 to 1.2 kin, and these clouds mostly have evidently small optical depths and droplet effective radii. The vertically integrated cloud liquid water content of CPR-missed warm clouds is smaller than 50 g m 2 It is also revealed that CPR misses some warm clouds that have small optical depths or small droplet sizes, besides those limited in the boundary layer below about 1 km due to ground clutter. 展开更多
关键词 oceanic warm cloud Cloud Profiling Radar MODIS cloud occurrence underestimation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部