To investigate the flow behavior of 2219 Al alloy during warm deformation, the thermal compression test was conducted in the temperature range of 483-573 K and the strain rate range of 0.001-5 s^-1 on a Gleeble-3500 t...To investigate the flow behavior of 2219 Al alloy during warm deformation, the thermal compression test was conducted in the temperature range of 483-573 K and the strain rate range of 0.001-5 s^-1 on a Gleeble-3500 thermomechanical simulation unit. The true stress-true strain curves obtained showed that the flow stress increased with the decrease in temperature and/or the increase in strain rate and the softening mechanism primarily proceeded via dynamic recovery. The modification on the conventional Arrhenius-type constitutive model approach was made, the material variables and activation energy were determined to be dependent on the deformation parameters. The modified flow stresses were found to be in close agreement with the experimental values. Furthermore, the activation energy obtained under different deformation conditions showed that it decreased with the rise in temperature and/or strain rate, and was also affected by the coupled effect of strain and strain rate.展开更多
Based on 30MnSiV steel, the deformation resistance was studied by using Gleeble 1500 thermomechanical simulator. The mathematical model of the deformation resistance is established by analyzing the relationship of the...Based on 30MnSiV steel, the deformation resistance was studied by using Gleeble 1500 thermomechanical simulator. The mathematical model of the deformation resistance is established by analyzing the relationship of the deformation temperature, deformation rate and deformation resistance. The regression equation is highly noticeable by means of regression analysis. The mathematical model corresponds to test data by means of the contrast.展开更多
The ductility map of 304HC stainless was determined by using the Gleeble-1500 dynamic thermal-mechanical simulator. The effect of Cu on the hot ductility of 304HC stainless steel was analyzed and the mathematical mode...The ductility map of 304HC stainless was determined by using the Gleeble-1500 dynamic thermal-mechanical simulator. The effect of Cu on the hot ductility of 304HC stainless steel was analyzed and the mathematical model of resistance to deformation was established. The microstructure, inclusion and fracture surface were studied by using the method of micro structure analysis, scanning, energy spectrum and electron microscope. The results show that Cu has effect on the hot ductility, and the hot ductility of 304HC stainless steel decrease with the increase of content of Cu. The deformation temperature also has much effect on the hot ductility, the suitable deformation temperature are 1100-1200℃. The reason of it is that the Cu rich chemical compounds were precipitated from austenite phase during cooling. The Cu rich chemical compounds are brittle substance such as Cu2S, Cu2O and ε-Cu etc.展开更多
Warm deformation was investigated for steels containing carbon of 0. 45%,0. 79%, and 1. 26% respeetively with martensite starting structure, using Gleeble 3500 thermomechanical simulator at the temperature ranging fro...Warm deformation was investigated for steels containing carbon of 0. 45%,0. 79%, and 1. 26% respeetively with martensite starting structure, using Gleeble 3500 thermomechanical simulator at the temperature ranging from 873 K to 973 K and the strain rate ranging from 0.1 s^-1 to 0. 001 s^-1. The effect of carbon content on the deformation activation energy, Z value and the deformation resistance was analyzed, The results showed that the deformation resistance decreased with increasing carbon content. The peak stress of the steel containing earbon of 1.26% was decreased by 16.2% compared to the steel containing carbon of 0.45% under the same condition. This may be attributed to the weakening effect of solid solution strengthening which outweighs the precipitation strengthening of cementite.展开更多
A 2-D mathematical model of tidal current and sediment has been developed for the Oujiang Estuary and the Wenzhou Bay. This model accomodates complicated features including multiple islands, existence of turbidity, an...A 2-D mathematical model of tidal current and sediment has been developed for the Oujiang Estuary and the Wenzhou Bay. This model accomodates complicated features including multiple islands, existence of turbidity, and significant differ-ence in size distribution of bed material. The governing equations for non-uniform suspended load and bed load transport are presented in a boundary-fitted orthogonal curvilinear coordinate system. The numerical solution procedures along with their initial conditions, boundary conditions, and movable boundary technique are presented. Strategies for computation of the critical condition of deposition or erosion, sediment transport capacity, non-uniform bed load discharge, etc. are suggested. The model verification computation shows that, the tidal levels computed from the model are in good agreement with the field data at the 18 tidal gauge stations. The computed velocities and flow directions also agree well with the values measured along the totally 52 synchronously observed verticals distributed over 8 cross sections. The coraputed tidal water throughputs through the Huangda'ao cross section are close to the measured data. And the computed values of bed deformation from Yangfushan to the estuary outfall and in the outer-sea area are in good agreement with the data observed from 1986 to 1992. The changes of tidal volumes through the estuary, velocities in different channels and the bed form due to the influence of the reclamation project on the Wenzhou shoal are predicted by means of this model.展开更多
The hot tensile deformation properties and microstructure evolution of high purity C71500 cupronickel alloy at 1023-1273 K and 0.0001-0.1 s^(-1)strain rates were studied by uniaxial hot tensile deformation method.Base...The hot tensile deformation properties and microstructure evolution of high purity C71500 cupronickel alloy at 1023-1273 K and 0.0001-0.1 s^(-1)strain rates were studied by uniaxial hot tensile deformation method.Based on the experimental data,the flow behavior,microstructure and fracture characteristics of the alloy were analyzed after considering the influence of different deformation parameters.The relationship between microstructure and high temperature(T≥1023 K)plasticity is discussed,and the fracture mechanism is revealed.The relationship between strain rate sensitivity coefficient and stress index and plastic deformation is discussed.The constitutive equation of the alloy is established by Johnson-Cook model.Based on the dynamic material model,the energy dissipation model is established,and Prasad’s instability criterion based on Ziegler’s expected rheological theory is used to predict the unstable region in the processing map.Processing map in hot tensile is analyzed to provide theoretical basis for different processing technology.展开更多
Geodetic deformation severely affects the development of the oilfield and probably causes casing damage or abandonment of injection wells and producers. Therefore, it is meaningful to survey and study three-dimensiona...Geodetic deformation severely affects the development of the oilfield and probably causes casing damage or abandonment of injection wells and producers. Therefore, it is meaningful to survey and study three-dimensional geodetic deformation in the process of the oilfield development. In order to study this issue, 11-year long term surveying of three-dimensional geodetic deformation has been carried out while developing Naner area in Daqing oilfield. Basic rules of 3-D geodetic deformation have been obtained through surveying. Results show that production and injection under high pressure may cause the changes of surface elevation, and geodetic deformation correlates with simultaneous formation pressure. Precautions and relative technological measurements have been put forward in the waterflood development in Naner region and provide theoretical guidelines for the production and casing preservation of the oilfield. Finally, surveying results are interpreted by porous elastic theory. Mathematical model to calculate 3-D geodetic deformation is put forward in the course of the oilfield development.展开更多
The paper presents some specific procedures in modelling a deformation vector at deformation investigation of various engineering structures, buildings or terrain surfaces which are exposed by abiotik factors, for exa...The paper presents some specific procedures in modelling a deformation vector at deformation investigation of various engineering structures, buildings or terrain surfaces which are exposed by abiotik factors, for example by underground mining activities or recent geotectonic movements. A specific problem in deformation measurements is solved, when the same conditions of a monitoring network structure cannot be kept during all periodic observations.展开更多
A mathematical model of the bellows dispersion system is developed by combining the interior ballistic theory with structural dynamics theory to describe the deformation course of bellows. By analyzing the physical mo...A mathematical model of the bellows dispersion system is developed by combining the interior ballistic theory with structural dynamics theory to describe the deformation course of bellows. By analyzing the physical model of the bellows dispersion system, the dispersion course is divided into three stages. For each stage, mathematical model is built and its terminal conditions are given. The numerical simulation is based on the Runge-Kutta method and differential quadrature method. Simulation results of the model agree with those of the model built by only interior ballistics theory. However, this model is congruous with the actual dispersion course and can more easily determine the dispersion time and submunition displacement.展开更多
Considering the changes of ply yarn 's structure parameters during the axial extension,a new model has been proposed for predicting the tensile curve of polyester twisted ply yarn under large deformation without t...Considering the changes of ply yarn 's structure parameters during the axial extension,a new model has been proposed for predicting the tensile curve of polyester twisted ply yarn under large deformation without the tensile strength tests.The relationships between the structural parameters and tensile properties under large deformation were considered.The feasibility and accuracy of the model were studied by comparing the predictive results and the experimental ones.The structural parameters in the model were acquired under every strain before rupture.The radial dimension and twist angle of the yarn were obtained by an observation platform and image processing technique.The true modulus of the yarn was obtained indirectly from the tensile data of the single yarn and the mathematical equations.The tensile curves of the yarns at different twist levels for predicting were plotted.The results demonstrated that the predicted curve tendency and the values were quite close to the experimental ones.The model exhibited a good applicability to predict the tensile curves for low and medium twist yarns.展开更多
A model of deformation resistance during hot strip rolling was established based on generalized additive model.Firstly,a data modeling method based on generalized additive model was given.It included the selection of ...A model of deformation resistance during hot strip rolling was established based on generalized additive model.Firstly,a data modeling method based on generalized additive model was given.It included the selection of dependent variable and independent variables of the model,the link function of dependent variable and smoothing functional form of each independent variable,estimating process of the link function and smooth functions,and the last model modification.Then,the practical modeling test was carried out based on a large amount of hot rolling process data.An integrated variable was proposed to reflect the effects of different chemical compositions such as carbon,silicon,manganese,nickel,chromium,niobium,etc.The integrated chemical composition,strain,strain rate and rolling temperature were selected as independent variables and the cubic spline as the smooth function for them.The modeling process of deformation resistance was realized by SAS software,and the influence curves of the independent variables on deformation resistance were obtained by local scoring algorithm.Some interesting phenomena were found,for example,there is a critical value of strain rate,and the deformation resistance increases before this value and then decreases.The results confirm that the new model has higher prediction accuracy than traditional ones and is suitable for carbon steel,microalloyed steel,alloyed steel and other steel grades.展开更多
The single crystal blade is one of the key technologies for improving the performance, durability and reliability of aero-engines and ground gas-turbine engines. However, the anisotropic mechanical properties of the s...The single crystal blade is one of the key technologies for improving the performance, durability and reliability of aero-engines and ground gas-turbine engines. However, the anisotropic mechanical properties of the single crystal material makes a great deal of difficulties on the development and the application of the single crystal blade, which is a challenge for the engineering application of the single crystal superalloy and the theoretic bases of the application. Some researches on the strength analysis and the life prediction of the anisotropic single crystal blade were carried out by the authors' research team. They are as follows. The crystallographic constitutive models for the plastic and the creep behaviors and the method of the rupture life prediction were established and verified. The tensile or the creep experiments for DD3 single crystal alloy with different orientations under different temperatures and different tensile rates or under different temperatures and different stress levels were carried out. The experimental data and the anisotropic properties at intermediate and high temperatures revealed by the experiments are significant for the application of the single crystal alloy. In addition, the experimental research for a kind of single crystal blade was also made. As the application of the researches the strength analysis and the life prediction were carried out for the single crystal blade of a certain aero-engine. In this part, the constitutive models and their applications are described, and the experimental research work will be described in part II.展开更多
This research develops a new mathematical modeling method by combining industrial big data and process mechanism analysis under the framework of generalized additive models(GAM)to generate a practical model with gener...This research develops a new mathematical modeling method by combining industrial big data and process mechanism analysis under the framework of generalized additive models(GAM)to generate a practical model with generalization and precision.Specifically,the proposed modeling method includes the following steps.Firstly,the influence factors are screened using mechanism knowledge and data-mining methods.Secondly,the unary GAM without interactions including cleaning the data,building the sub-models,and verifying the sub-models.Subsequently,the interactions between the various factors are explored,and the binary GAM with interactions is constructed.The relationships among the sub-models are analyzed,and the integrated model is built.Finally,based on the proposed modeling method,two prediction models of mechanical property and deformation resistance for hot-rolled strips are established.Industrial actual data verification demonstrates that the new models have good prediction precision,and the mean absolute percentage errors of tensile strength,yield strength and deformation resistance are 2.54%,3.34%and 6.53%,respectively.And experimental results suggest that the proposed method offers a new approach to industrial process modeling.展开更多
The deformation resistance of Fe-Mn-V-N alloy under different deformation conditions was investigated by hot compression method on thermal simulator. Effects of deformation degree, deformation temperature, and strain ...The deformation resistance of Fe-Mn-V-N alloy under different deformation conditions was investigated by hot compression method on thermal simulator. Effects of deformation degree, deformation temperature, and strain rate on deformation resistance were analyzed. The results show that when other conditions are constant, the deformation resistance increases with the increase in deformation degree and strain rate and decreases with the increase in deformation temperature. At the same time, the mathematical model of deformation resistance for Fe-Mn- V-N alloy was established by lstOpt software using the Levenberg-Marquardt optimization algorithm carried out on the fitting of regression coefficients, which has higher fitting precision.展开更多
This paper presents an adaptive grid deformation technique for optimizing ship hull forms using computational fluid dynamics(CFD).The proposed method enables accurate and smooth updates of the hull surface and 3-D CFD...This paper presents an adaptive grid deformation technique for optimizing ship hull forms using computational fluid dynamics(CFD).The proposed method enables accurate and smooth updates of the hull surface and 3-D CFD grids in response to design variables.This technique incorporates a two-level point-transformation approach to move the grid points by a few design points.Initially,generic B-splines are utilized to transform grid points according to the displacements of the control points within a defined control box.This ensures surface modification accuracy and smoothness,similar to those provided by non-uniform rational B-splines.Subsequently,radial basis functions are used to interpolate the movements of the control points with a limited set of design points.The developed method effectively maintains the mesh quality and simulation efficiency.By applying this method to surface and grid adaptation,a regression model is proposed in the form of a second-order polynomial to represent the relationship between the geometric parameters and design variables.This polynomial is then used to introduce geometric constraints.Furthermore,a radial basis function surrogate model for the calm-water resistance is constructed to approximate the objective function.An enhanced optimization framework is proposed for CFD–based hull optimization and applied to KVLCC2 to validate its feasibility and efficiency.展开更多
基金Projects(U1637601,51405520,51327902) supported by the National Natural Science Foundation of ChinaProject(ZZYJKT2017-06) supported by State Key Laboratory of High Performance Complex Manufacturing of Central South University,China
文摘To investigate the flow behavior of 2219 Al alloy during warm deformation, the thermal compression test was conducted in the temperature range of 483-573 K and the strain rate range of 0.001-5 s^-1 on a Gleeble-3500 thermomechanical simulation unit. The true stress-true strain curves obtained showed that the flow stress increased with the decrease in temperature and/or the increase in strain rate and the softening mechanism primarily proceeded via dynamic recovery. The modification on the conventional Arrhenius-type constitutive model approach was made, the material variables and activation energy were determined to be dependent on the deformation parameters. The modified flow stresses were found to be in close agreement with the experimental values. Furthermore, the activation energy obtained under different deformation conditions showed that it decreased with the rise in temperature and/or strain rate, and was also affected by the coupled effect of strain and strain rate.
文摘Based on 30MnSiV steel, the deformation resistance was studied by using Gleeble 1500 thermomechanical simulator. The mathematical model of the deformation resistance is established by analyzing the relationship of the deformation temperature, deformation rate and deformation resistance. The regression equation is highly noticeable by means of regression analysis. The mathematical model corresponds to test data by means of the contrast.
基金This study was financially supported by both the National Natural Science Founda- tion of China (Grant No.59995440)the Natural Science Foundation of Liaoning Province (Grant No.2001101021).
文摘The ductility map of 304HC stainless was determined by using the Gleeble-1500 dynamic thermal-mechanical simulator. The effect of Cu on the hot ductility of 304HC stainless steel was analyzed and the mathematical model of resistance to deformation was established. The microstructure, inclusion and fracture surface were studied by using the method of micro structure analysis, scanning, energy spectrum and electron microscope. The results show that Cu has effect on the hot ductility, and the hot ductility of 304HC stainless steel decrease with the increase of content of Cu. The deformation temperature also has much effect on the hot ductility, the suitable deformation temperature are 1100-1200℃. The reason of it is that the Cu rich chemical compounds were precipitated from austenite phase during cooling. The Cu rich chemical compounds are brittle substance such as Cu2S, Cu2O and ε-Cu etc.
基金Item Sponsored by National Natural Science Foundation of China (50821001 ,50371074,50271060)Natural Science Foundation of Hebei Province of China (E2008000784)
文摘Warm deformation was investigated for steels containing carbon of 0. 45%,0. 79%, and 1. 26% respeetively with martensite starting structure, using Gleeble 3500 thermomechanical simulator at the temperature ranging from 873 K to 973 K and the strain rate ranging from 0.1 s^-1 to 0. 001 s^-1. The effect of carbon content on the deformation activation energy, Z value and the deformation resistance was analyzed, The results showed that the deformation resistance decreased with increasing carbon content. The peak stress of the steel containing earbon of 1.26% was decreased by 16.2% compared to the steel containing carbon of 0.45% under the same condition. This may be attributed to the weakening effect of solid solution strengthening which outweighs the precipitation strengthening of cementite.
文摘A 2-D mathematical model of tidal current and sediment has been developed for the Oujiang Estuary and the Wenzhou Bay. This model accomodates complicated features including multiple islands, existence of turbidity, and significant differ-ence in size distribution of bed material. The governing equations for non-uniform suspended load and bed load transport are presented in a boundary-fitted orthogonal curvilinear coordinate system. The numerical solution procedures along with their initial conditions, boundary conditions, and movable boundary technique are presented. Strategies for computation of the critical condition of deposition or erosion, sediment transport capacity, non-uniform bed load discharge, etc. are suggested. The model verification computation shows that, the tidal levels computed from the model are in good agreement with the field data at the 18 tidal gauge stations. The computed velocities and flow directions also agree well with the values measured along the totally 52 synchronously observed verticals distributed over 8 cross sections. The coraputed tidal water throughputs through the Huangda'ao cross section are close to the measured data. And the computed values of bed deformation from Yangfushan to the estuary outfall and in the outer-sea area are in good agreement with the data observed from 1986 to 1992. The changes of tidal volumes through the estuary, velocities in different channels and the bed form due to the influence of the reclamation project on the Wenzhou shoal are predicted by means of this model.
基金Funded by Ministry of Industry and Information Technology of the People's Republic of China(No.TC170A2KN-8)the National Natural Science Foundation of China(No.51801149)。
文摘The hot tensile deformation properties and microstructure evolution of high purity C71500 cupronickel alloy at 1023-1273 K and 0.0001-0.1 s^(-1)strain rates were studied by uniaxial hot tensile deformation method.Based on the experimental data,the flow behavior,microstructure and fracture characteristics of the alloy were analyzed after considering the influence of different deformation parameters.The relationship between microstructure and high temperature(T≥1023 K)plasticity is discussed,and the fracture mechanism is revealed.The relationship between strain rate sensitivity coefficient and stress index and plastic deformation is discussed.The constitutive equation of the alloy is established by Johnson-Cook model.Based on the dynamic material model,the energy dissipation model is established,and Prasad’s instability criterion based on Ziegler’s expected rheological theory is used to predict the unstable region in the processing map.Processing map in hot tensile is analyzed to provide theoretical basis for different processing technology.
文摘Geodetic deformation severely affects the development of the oilfield and probably causes casing damage or abandonment of injection wells and producers. Therefore, it is meaningful to survey and study three-dimensional geodetic deformation in the process of the oilfield development. In order to study this issue, 11-year long term surveying of three-dimensional geodetic deformation has been carried out while developing Naner area in Daqing oilfield. Basic rules of 3-D geodetic deformation have been obtained through surveying. Results show that production and injection under high pressure may cause the changes of surface elevation, and geodetic deformation correlates with simultaneous formation pressure. Precautions and relative technological measurements have been put forward in the waterflood development in Naner region and provide theoretical guidelines for the production and casing preservation of the oilfield. Finally, surveying results are interpreted by porous elastic theory. Mathematical model to calculate 3-D geodetic deformation is put forward in the course of the oilfield development.
文摘The paper presents some specific procedures in modelling a deformation vector at deformation investigation of various engineering structures, buildings or terrain surfaces which are exposed by abiotik factors, for example by underground mining activities or recent geotectonic movements. A specific problem in deformation measurements is solved, when the same conditions of a monitoring network structure cannot be kept during all periodic observations.
文摘A mathematical model of the bellows dispersion system is developed by combining the interior ballistic theory with structural dynamics theory to describe the deformation course of bellows. By analyzing the physical model of the bellows dispersion system, the dispersion course is divided into three stages. For each stage, mathematical model is built and its terminal conditions are given. The numerical simulation is based on the Runge-Kutta method and differential quadrature method. Simulation results of the model agree with those of the model built by only interior ballistics theory. However, this model is congruous with the actual dispersion course and can more easily determine the dispersion time and submunition displacement.
基金“111 Project” Biomedical Textile Materials Science and Technology,China(No.B07024)The Key(Keygrant)Project of Chinese Ministry of Education,China(No.113027A)
文摘Considering the changes of ply yarn 's structure parameters during the axial extension,a new model has been proposed for predicting the tensile curve of polyester twisted ply yarn under large deformation without the tensile strength tests.The relationships between the structural parameters and tensile properties under large deformation were considered.The feasibility and accuracy of the model were studied by comparing the predictive results and the experimental ones.The structural parameters in the model were acquired under every strain before rupture.The radial dimension and twist angle of the yarn were obtained by an observation platform and image processing technique.The true modulus of the yarn was obtained indirectly from the tensile data of the single yarn and the mathematical equations.The tensile curves of the yarns at different twist levels for predicting were plotted.The results demonstrated that the predicted curve tendency and the values were quite close to the experimental ones.The model exhibited a good applicability to predict the tensile curves for low and medium twist yarns.
基金supported by National Natural Science Foundation of China (51774219)Science and Technology Research Program of Hubei Ministry of Education(D20161103)Youth Science and technology Program of Wuhan(2016070204010099)
文摘A model of deformation resistance during hot strip rolling was established based on generalized additive model.Firstly,a data modeling method based on generalized additive model was given.It included the selection of dependent variable and independent variables of the model,the link function of dependent variable and smoothing functional form of each independent variable,estimating process of the link function and smooth functions,and the last model modification.Then,the practical modeling test was carried out based on a large amount of hot rolling process data.An integrated variable was proposed to reflect the effects of different chemical compositions such as carbon,silicon,manganese,nickel,chromium,niobium,etc.The integrated chemical composition,strain,strain rate and rolling temperature were selected as independent variables and the cubic spline as the smooth function for them.The modeling process of deformation resistance was realized by SAS software,and the influence curves of the independent variables on deformation resistance were obtained by local scoring algorithm.Some interesting phenomena were found,for example,there is a critical value of strain rate,and the deformation resistance increases before this value and then decreases.The results confirm that the new model has higher prediction accuracy than traditional ones and is suitable for carbon steel,microalloyed steel,alloyed steel and other steel grades.
文摘The single crystal blade is one of the key technologies for improving the performance, durability and reliability of aero-engines and ground gas-turbine engines. However, the anisotropic mechanical properties of the single crystal material makes a great deal of difficulties on the development and the application of the single crystal blade, which is a challenge for the engineering application of the single crystal superalloy and the theoretic bases of the application. Some researches on the strength analysis and the life prediction of the anisotropic single crystal blade were carried out by the authors' research team. They are as follows. The crystallographic constitutive models for the plastic and the creep behaviors and the method of the rupture life prediction were established and verified. The tensile or the creep experiments for DD3 single crystal alloy with different orientations under different temperatures and different tensile rates or under different temperatures and different stress levels were carried out. The experimental data and the anisotropic properties at intermediate and high temperatures revealed by the experiments are significant for the application of the single crystal alloy. In addition, the experimental research for a kind of single crystal blade was also made. As the application of the researches the strength analysis and the life prediction were carried out for the single crystal blade of a certain aero-engine. In this part, the constitutive models and their applications are described, and the experimental research work will be described in part II.
基金Project(51774219)supported by the National Natural Science Foundation of China
文摘This research develops a new mathematical modeling method by combining industrial big data and process mechanism analysis under the framework of generalized additive models(GAM)to generate a practical model with generalization and precision.Specifically,the proposed modeling method includes the following steps.Firstly,the influence factors are screened using mechanism knowledge and data-mining methods.Secondly,the unary GAM without interactions including cleaning the data,building the sub-models,and verifying the sub-models.Subsequently,the interactions between the various factors are explored,and the binary GAM with interactions is constructed.The relationships among the sub-models are analyzed,and the integrated model is built.Finally,based on the proposed modeling method,two prediction models of mechanical property and deformation resistance for hot-rolled strips are established.Industrial actual data verification demonstrates that the new models have good prediction precision,and the mean absolute percentage errors of tensile strength,yield strength and deformation resistance are 2.54%,3.34%and 6.53%,respectively.And experimental results suggest that the proposed method offers a new approach to industrial process modeling.
基金financially supported by the National Natural Science Foundation of China(Nos. 51274083 and 51374090)the Natural Science Foundation of Hebei Province (No. E2013209228)the Innovation Team Leading Talent in Universities Cultivation Plan of Hebei Province (No. LJRC007)
文摘The deformation resistance of Fe-Mn-V-N alloy under different deformation conditions was investigated by hot compression method on thermal simulator. Effects of deformation degree, deformation temperature, and strain rate on deformation resistance were analyzed. The results show that when other conditions are constant, the deformation resistance increases with the increase in deformation degree and strain rate and decreases with the increase in deformation temperature. At the same time, the mathematical model of deformation resistance for Fe-Mn- V-N alloy was established by lstOpt software using the Levenberg-Marquardt optimization algorithm carried out on the fitting of regression coefficients, which has higher fitting precision.
基金supported by the Lloyd's Register Foundation (Grant No.GA100050)the Research Institute of Engineering Research (IOER)and Research Institute of Marine Systems Engineering (RIMSE)at Seoul National University。
文摘This paper presents an adaptive grid deformation technique for optimizing ship hull forms using computational fluid dynamics(CFD).The proposed method enables accurate and smooth updates of the hull surface and 3-D CFD grids in response to design variables.This technique incorporates a two-level point-transformation approach to move the grid points by a few design points.Initially,generic B-splines are utilized to transform grid points according to the displacements of the control points within a defined control box.This ensures surface modification accuracy and smoothness,similar to those provided by non-uniform rational B-splines.Subsequently,radial basis functions are used to interpolate the movements of the control points with a limited set of design points.The developed method effectively maintains the mesh quality and simulation efficiency.By applying this method to surface and grid adaptation,a regression model is proposed in the form of a second-order polynomial to represent the relationship between the geometric parameters and design variables.This polynomial is then used to introduce geometric constraints.Furthermore,a radial basis function surrogate model for the calm-water resistance is constructed to approximate the objective function.An enhanced optimization framework is proposed for CFD–based hull optimization and applied to KVLCC2 to validate its feasibility and efficiency.