An extrusion-ploughing process was presented to fabricate the integral fin function-surface. Cutting edge inclination angle and rake angle can be calculated from the tool’s geometry relationship. The description of f...An extrusion-ploughing process was presented to fabricate the integral fin function-surface. Cutting edge inclination angle and rake angle can be calculated from the tool’s geometry relationship. The description of fins’ geometry characters was standardized. The experiments show that, when the middle cutting edge’s inclination angle η is less than 35°, continuous fin will come out; when η is between 35° and 55°, the fins will be saw-tooth ones, and the fins will be torn when this angle is above 55°; when the extrusion angle θ is between 60° and 150°, the fins will appear, or else, the fins will be torn into chips from the base. Forming angle and clearance angle have little effect on fin’s formation. For continuous fin, its height is close to cutting depth when it is small, but it will become approximately constant as cutting depth grows; for saw-tooth fins, the width, the height, as well as the clearance will increase with the increase of cutting depth, but the increment of clearance is small; neither for continuous fin, nor for saw-tooth ones, cutting velocity has little influence on their structure parameters.展开更多
Myxospermy is an important feature of achenes of the alpine plant Mirabilis himalaica,and the achene mucilage increases the germination rate and early seedling growth during exposure to abiotic stresses,which has impo...Myxospermy is an important feature of achenes of the alpine plant Mirabilis himalaica,and the achene mucilage increases the germination rate and early seedling growth during exposure to abiotic stresses,which has important functions that allow M.himalaica to survive the extreme climate of the Tibet Plateau.However,achene formation and mucilage extrusion are poorly understood.In the present study,comprehensive analyses were performed on mucilage production during achene development and mucilage release from hydrated achene pericarp in M.himalaica.First,fertilization initiated the development of M.himalaica achenes,during which their color,size and texture were altered dramatically.Second,using a metachromatic staining procedure,cytological events,the establishment of mucilage secretory cells in the inner epicarp layer were observed.The hydration of mature achenes led to the rapid bursting of mucilage secretory cells,which released a hydrophilic gel that surrounded the achenes.Finally,enzymatic digestion indicated that major components of the mucilage were pectins;glucose(41.40%),rhamnose(26.58%),galactose(18.33%),trehalose(12.12%),and mannose(1.57%)were found to be the components of achene by using ion-exchange chromatography.展开更多
Based on the observation and analysis of cores and thin sections,and combined with cathodoluminescence,laser Raman,fluid inclusions,and in-situ LA-ICP-MS U-Pb dating,the genetic mechanism and petroleum geological sign...Based on the observation and analysis of cores and thin sections,and combined with cathodoluminescence,laser Raman,fluid inclusions,and in-situ LA-ICP-MS U-Pb dating,the genetic mechanism and petroleum geological significance of calcite veins in shales of the Cretaceous Qingshankou Formation in the Songliao Basin were investigated.Macroscopically,the calcite veins are bedding parallel,and show lenticular,S-shaped,cone-in-cone and pinnate structures.Microscopically,they can be divided into syntaxial blocky or columnar calcite veins and antitaxial fibrous calcite veins.The aqueous fluid inclusions in blocky calcite veins have a homogenization temperature of 132.5–145.1℃,the in-situ U-Pb dating age of blocky calcite veins is(69.9±5.2)Ma,suggesting that the middle maturity period of source rocks and the conventional oil formation period in the Qingshankou Formation are the sedimentary period of Mingshui Formation in Late Cretaceous.The aqueous fluid inclusions in fibrous calcite veins with the homogenization temperature of 141.2–157.4℃,yields the U-Pb age of(44.7±6.9)Ma,indicating that the middle-high maturity period of source rocks and the Gulong shale oil formation period in the Qingshankou Formation are the sedimentary period of Paleocene Yi'an Formaiton.The syntaxial blocky or columnar calcite veins were formed sensitively to the diagenetic evolution and hydrocarbon generation,mainly in three stages(fracture opening,vein-forming fluid filling,and vein growth).Tectonic extrusion activities and fluid overpressure are induction factors for the formation of fractures,and vein-forming fluid flows mainly as diffusion in a short distance.These veins generally follow a competitive growth mode.The antitaxial fibrous calcite veins were formed under the driving of the force of crystallization in a non-competitive growth environment.It is considered that the calcite veins in organic-rich shale of the Qingshankou Formation in the study area has important implications for local tectonic activities,fluid overpressure,hydrocarbon generation and expulsion,and diagenesis-hydrocarbon accumulation dating of the Songliao Basin.展开更多
With the consideration of the randomness of complex geologic parameters for ultra-deep wells,an uncertainty analysis method is presented for the extrusion load on casing in ultra-deep wells through complex formation a...With the consideration of the randomness of complex geologic parameters for ultra-deep wells,an uncertainty analysis method is presented for the extrusion load on casing in ultra-deep wells through complex formation at a certain confidence level.Based on the extrusion load model for casing in ultra-deep wells and the prerequisite of integrity of formation-cement ring-casing,the probability and statistics theory are introduced and the sensitivity analysis on the uncertainty of extrusion load on casing is conducted.The distribution types of each formation parameters are determined statistically.The distribution type and distribution function of the extrusion load on casing are derived.Then,the uncertainty analysis of the extrusion load on casing is carried out on several ultra-deep wells in Shanqian block as case study.Several conclusions are made regarding to the field trial result.The randomness of formation elasticity modulus and formation Poisson’s ratio are the main influence factors.The equivalent density profile of extrusion load on casing in ultra-deep wells is a confidence interval with a certain confidence level,rather than a single curve;the higher the confidence level is,the larger the bandwidth of the confidence interval of equivalent density profile becomes,and the larger the range of uncertainty interval becomes.Compared with the result of uncertainty analysis,an error exists in the result of traditional single valued calculation method.The error varies with different casing program and can be either positive or negative.The application of uncertainty analysis of extrusion load on casing provides proof for the accurate determination of casing collapse safety factor.Thus,the over engineering design or under engineering design as a result of tradition casing design will be avoided.展开更多
基金Projects(50436010 50375055) supported by the National Natural Science Foundation of China+1 种基金 Project(04105942) supported by the Natural Science Foundation of Guangdong Province, China Project(2005B10201002) supported by Scientific and Technological Project of Guangdong Province, China
文摘An extrusion-ploughing process was presented to fabricate the integral fin function-surface. Cutting edge inclination angle and rake angle can be calculated from the tool’s geometry relationship. The description of fins’ geometry characters was standardized. The experiments show that, when the middle cutting edge’s inclination angle η is less than 35°, continuous fin will come out; when η is between 35° and 55°, the fins will be saw-tooth ones, and the fins will be torn when this angle is above 55°; when the extrusion angle θ is between 60° and 150°, the fins will appear, or else, the fins will be torn into chips from the base. Forming angle and clearance angle have little effect on fin’s formation. For continuous fin, its height is close to cutting depth when it is small, but it will become approximately constant as cutting depth grows; for saw-tooth fins, the width, the height, as well as the clearance will increase with the increase of cutting depth, but the increment of clearance is small; neither for continuous fin, nor for saw-tooth ones, cutting velocity has little influence on their structure parameters.
基金Projects (50436010, 50375055) supported by the National Natural Science Foundation of China Project (04105942) supported by the Natural Science Foundation of Guangdong Province, China
基金financially supported by the National Natural Science Foundation of China(Grant Nos.U20A20401,31270737)Tibet Autonomous Region Major Special Science and Technology(Grant No.XZ201901-GA-04)。
文摘Myxospermy is an important feature of achenes of the alpine plant Mirabilis himalaica,and the achene mucilage increases the germination rate and early seedling growth during exposure to abiotic stresses,which has important functions that allow M.himalaica to survive the extreme climate of the Tibet Plateau.However,achene formation and mucilage extrusion are poorly understood.In the present study,comprehensive analyses were performed on mucilage production during achene development and mucilage release from hydrated achene pericarp in M.himalaica.First,fertilization initiated the development of M.himalaica achenes,during which their color,size and texture were altered dramatically.Second,using a metachromatic staining procedure,cytological events,the establishment of mucilage secretory cells in the inner epicarp layer were observed.The hydration of mature achenes led to the rapid bursting of mucilage secretory cells,which released a hydrophilic gel that surrounded the achenes.Finally,enzymatic digestion indicated that major components of the mucilage were pectins;glucose(41.40%),rhamnose(26.58%),galactose(18.33%),trehalose(12.12%),and mannose(1.57%)were found to be the components of achene by using ion-exchange chromatography.
基金Supported by the Natural Science Foundation of Hebei(D2024501002)Fundamental Research Funds for the Central Universities(N2423020)Major Science and Technology Projects of CNPC(2021ZZ10)。
文摘Based on the observation and analysis of cores and thin sections,and combined with cathodoluminescence,laser Raman,fluid inclusions,and in-situ LA-ICP-MS U-Pb dating,the genetic mechanism and petroleum geological significance of calcite veins in shales of the Cretaceous Qingshankou Formation in the Songliao Basin were investigated.Macroscopically,the calcite veins are bedding parallel,and show lenticular,S-shaped,cone-in-cone and pinnate structures.Microscopically,they can be divided into syntaxial blocky or columnar calcite veins and antitaxial fibrous calcite veins.The aqueous fluid inclusions in blocky calcite veins have a homogenization temperature of 132.5–145.1℃,the in-situ U-Pb dating age of blocky calcite veins is(69.9±5.2)Ma,suggesting that the middle maturity period of source rocks and the conventional oil formation period in the Qingshankou Formation are the sedimentary period of Mingshui Formation in Late Cretaceous.The aqueous fluid inclusions in fibrous calcite veins with the homogenization temperature of 141.2–157.4℃,yields the U-Pb age of(44.7±6.9)Ma,indicating that the middle-high maturity period of source rocks and the Gulong shale oil formation period in the Qingshankou Formation are the sedimentary period of Paleocene Yi'an Formaiton.The syntaxial blocky or columnar calcite veins were formed sensitively to the diagenetic evolution and hydrocarbon generation,mainly in three stages(fracture opening,vein-forming fluid filling,and vein growth).Tectonic extrusion activities and fluid overpressure are induction factors for the formation of fractures,and vein-forming fluid flows mainly as diffusion in a short distance.These veins generally follow a competitive growth mode.The antitaxial fibrous calcite veins were formed under the driving of the force of crystallization in a non-competitive growth environment.It is considered that the calcite veins in organic-rich shale of the Qingshankou Formation in the study area has important implications for local tectonic activities,fluid overpressure,hydrocarbon generation and expulsion,and diagenesis-hydrocarbon accumulation dating of the Songliao Basin.
文摘With the consideration of the randomness of complex geologic parameters for ultra-deep wells,an uncertainty analysis method is presented for the extrusion load on casing in ultra-deep wells through complex formation at a certain confidence level.Based on the extrusion load model for casing in ultra-deep wells and the prerequisite of integrity of formation-cement ring-casing,the probability and statistics theory are introduced and the sensitivity analysis on the uncertainty of extrusion load on casing is conducted.The distribution types of each formation parameters are determined statistically.The distribution type and distribution function of the extrusion load on casing are derived.Then,the uncertainty analysis of the extrusion load on casing is carried out on several ultra-deep wells in Shanqian block as case study.Several conclusions are made regarding to the field trial result.The randomness of formation elasticity modulus and formation Poisson’s ratio are the main influence factors.The equivalent density profile of extrusion load on casing in ultra-deep wells is a confidence interval with a certain confidence level,rather than a single curve;the higher the confidence level is,the larger the bandwidth of the confidence interval of equivalent density profile becomes,and the larger the range of uncertainty interval becomes.Compared with the result of uncertainty analysis,an error exists in the result of traditional single valued calculation method.The error varies with different casing program and can be either positive or negative.The application of uncertainty analysis of extrusion load on casing provides proof for the accurate determination of casing collapse safety factor.Thus,the over engineering design or under engineering design as a result of tradition casing design will be avoided.