The pavement performance of epoxy resin modified asphalt mixtures was investigated by the Marshall test, the indirect tensile test, the rutting test, the three-pointed bending test and the composite beam fatigue test....The pavement performance of epoxy resin modified asphalt mixtures was investigated by the Marshall test, the indirect tensile test, the rutting test, the three-pointed bending test and the composite beam fatigue test. In comparison with the performance of epoxy resin modified asphalt mixtures, the performance of stone matrix asphalt mixtures (SMA10) was also investigated. The rutting test and composite beam fatigue test results show that the epoxy resin modified asphalt mixtures can improve permanent deformation and fatigue characteristics. They also show lower temperature susceptibility and greater resistance to moisture damage compared to the SMA10. Findings from the research indicate that the epoxy resin modified asphalt mixture provides an optional material for the pavement of long-span steel bridges in China due to profound performance and economic advantages.展开更多
A finite-element model of the thermosetting epoxy asphalt mixture(EAM) microstructure is developed to simulate the indirect tension test(IDT).Image techniques are used to capture the EAM microstructure which is di...A finite-element model of the thermosetting epoxy asphalt mixture(EAM) microstructure is developed to simulate the indirect tension test(IDT).Image techniques are used to capture the EAM microstructure which is divided into two phases:aggregates and mastic.A viscoelastic constitutive relationship,which is obtained from the results of a creep test,is used to represent the mastic phase at intermittent temperatures.Model simulation results of the stiffness modulus in IDT compare favorably with experimental data.Different loading directions and velocities are employed in order to account for their influence on the modulus and the localized stress of the microstructure model.It is pointed out that the modulus is not consistent when the loading direction changes since the heterogeneous distribution of the mixture internal structure,and the loading velocity affects the localized stress as a result of the viscoelasticity of the mastic.The study results can provide a theoretical basis for the finite-element method,which can be extended to the numerical simulations of asphalt mixture micromechanical behavior.展开更多
Based on the analysis of the main failures discovered in pavement on steel deck plate and the demanding service condition of the pavement on steel deck, high-temperature rutting test, low-temperature bending test and ...Based on the analysis of the main failures discovered in pavement on steel deck plate and the demanding service condition of the pavement on steel deck, high-temperature rutting test, low-temperature bending test and controlled stress flexural fatigue test are used to study the performance of asphalt mixtures modified by epoxy resin including high-temperature stability, low-temperature cracking-resistance, and fatigue cracking-resistance, which are served to evaluate the modification effect of epoxy resin of different contents. With the addition of epoxy resin, all the three performances are improved greatly. However, when the amount of epoxy resin added is over a certain value, the modification effect will be stable with no extra benefit detected. Finally, in terms of the properties of the three respects, 20%, 30%, 30% are given separately as the proposal adding contents.展开更多
The fracture properties of epoxy asphalt mixtures (EAM) are evaluated based on J-integral and ultimate strength. Totally 60 semi-circular bending (SCB)specimens cored from superpave gyratory compactor (SGC)with ...The fracture properties of epoxy asphalt mixtures (EAM) are evaluated based on J-integral and ultimate strength. Totally 60 semi-circular bending (SCB)specimens cored from superpave gyratory compactor (SGC)with three groups of notch depths are tested at the temperature of - 10 and 20 ℃. The experimental results reveal good repeatability in EAM characterization. The tensile strength ratio of SCB to the indirect tensile test (IDT) is at a range of 1.4 to 1.7, and the ultimate strength of EAM is exponentially dependent on the notch depths. At the test temperatures, the critical J-integral value of EAM is much higher than that of hot mix asphalt( HMA) with thermoplastic asphalt binder. The response mode of EAM changes from ductile mode to brittle mode and the fracture energy increases 30% when temperature decreases from 20 to - 10℃, while its critical J-integral value decreases only 15%. It is concluded that EAM has better fracture resistance than thermo-plastic HMA; more fracture energy is needed to initiate cracks in EAM at low temperature, and the cracks propagate more rapidly than at room temperature.展开更多
In order to study the dynamic performance of the thermosetting epoxy asphalt mixture(EAM), an experimental program on the dynamic modulus E is conducted. First, E of the EAM under different temperatures and frequenc...In order to study the dynamic performance of the thermosetting epoxy asphalt mixture(EAM), an experimental program on the dynamic modulus E is conducted. First, E of the EAM under different temperatures and frequencies are tested through the simple performance test(SPT), and the effects of temperatures and frequencies on the dynamic modulus of the EAM are analyzed. Secondly, the static modulus of the EAM and the dynamic modulus of other two ordinary mixtures are tested and compared to E of the EAM. Finally the dynamic modulus master curve is constructed using the time-temperature superposition principle. The results show that the E values increase with the increase in the test frequency while on the other hand, the E values decrease with the increase in the test temperature. It also can be seen from the results that the dynamic modulus corresponding to the actual vehicle mode is significantly greater than the static modulus, and the dynamic modulus of the EAM is greater than that of SBS mixtures and the common hot mixed asphalt (HMA). The study results can provide a theoretical basis for the design and mechanical analysis of the steel deck pavement.展开更多
Crack is found to be a major distress that affects the performance of the epoxy asphalt pavement.An extended finite element method was proposed for investigating the fracture properties of the epoxy asphalt mixture.Fi...Crack is found to be a major distress that affects the performance of the epoxy asphalt pavement.An extended finite element method was proposed for investigating the fracture properties of the epoxy asphalt mixture.Firstly,the single-edge notched beam test was used to analyze the temperature effect and calculate the material parameters.Then,the mechanical responses were studied using numerical analysis.It is concluded that 5℃ can be selected as the critical temperature that affects the fracture properties,and numerical simulations indicate that crack propagation is found to significantly affect the stress state of the epoxy asphalt mixture.The maximum principal stress at the crack surface exhibits different trends at various temperatures.Numerical solution of stress intensity factor can well meet the theoretical solution,especially when the temperature is lower than 5℃.展开更多
The distributed optical fiber sensing technology was used to investigate the fracture behavior of the Epoxy Asphalt Mixture. The spatial distribution and variation of the strain development with crack propagation were...The distributed optical fiber sensing technology was used to investigate the fracture behavior of the Epoxy Asphalt Mixture. The spatial distribution and variation of the strain development with crack propagation were acquired using the brillouin optical time-domain reflectometer through the loading experiments of the composite beam structure. In addition, a finite element model of the composite beam structure was developed to analyze the mechanical responses of the epoxy asphalt mixture using the extended finite element method. The experimental results show that the development of crack propagation becomes instable with the increase of the load, and larger loads will generate deeper cracks. Moreover, the numerical results show that the mechanical response of the crack tip changes with the crack propagation, and the worst areas that subjected to crack damage are located on both sides of the composite beam structure.展开更多
环氧沥青是一种热固性材料,具有强度高、高温稳定性好、耐疲劳等优异性能。将环氧沥青混合料作为路面面层,是实现路面耐久性的一种可行方式。将环氧沥青混合料作为路面面层的铺装材料,并降低环氧沥青中环氧组分用量,通过抗压回弹模量试...环氧沥青是一种热固性材料,具有强度高、高温稳定性好、耐疲劳等优异性能。将环氧沥青混合料作为路面面层,是实现路面耐久性的一种可行方式。将环氧沥青混合料作为路面面层的铺装材料,并降低环氧沥青中环氧组分用量,通过抗压回弹模量试验和应力松弛试验获取环氧沥青混合料的力学参数。基于试验得到的混合料力学参数,设计不同路面结构组合,并使用有限元模拟手段对环氧沥青路面进行结构力学分析和组合优化设计。结果表明:沥青用量为60%和70%的环氧沥青混合料的路用性能和强度显著优于SBS改性沥青混合料。组合3(4 cm 60%EAC-13+4 cm AC-13),组合5(4 cm 70%EAC-13+4 cm 70%EAC-13),组合7(4 cm AC-13+4 cm 60%EAC-13)三种环氧沥青路面结构组合与其他结构组合相比具有较好的力学计算指标和经济性。展开更多
基金The National Natural Science Foundation of China(No50578038)the PhDPrograms Foundation of Ministry of Education of China (No20050286008)
文摘The pavement performance of epoxy resin modified asphalt mixtures was investigated by the Marshall test, the indirect tensile test, the rutting test, the three-pointed bending test and the composite beam fatigue test. In comparison with the performance of epoxy resin modified asphalt mixtures, the performance of stone matrix asphalt mixtures (SMA10) was also investigated. The rutting test and composite beam fatigue test results show that the epoxy resin modified asphalt mixtures can improve permanent deformation and fatigue characteristics. They also show lower temperature susceptibility and greater resistance to moisture damage compared to the SMA10. Findings from the research indicate that the epoxy resin modified asphalt mixture provides an optional material for the pavement of long-span steel bridges in China due to profound performance and economic advantages.
基金Program for New Century Excellent Talents in University(No. NCET-08-0118)Specialized Research Fund for the Doctoral Program of Higher Education (No. 20090092110049)
文摘A finite-element model of the thermosetting epoxy asphalt mixture(EAM) microstructure is developed to simulate the indirect tension test(IDT).Image techniques are used to capture the EAM microstructure which is divided into two phases:aggregates and mastic.A viscoelastic constitutive relationship,which is obtained from the results of a creep test,is used to represent the mastic phase at intermittent temperatures.Model simulation results of the stiffness modulus in IDT compare favorably with experimental data.Different loading directions and velocities are employed in order to account for their influence on the modulus and the localized stress of the microstructure model.It is pointed out that the modulus is not consistent when the loading direction changes since the heterogeneous distribution of the mixture internal structure,and the loading velocity affects the localized stress as a result of the viscoelasticity of the mastic.The study results can provide a theoretical basis for the finite-element method,which can be extended to the numerical simulations of asphalt mixture micromechanical behavior.
文摘Based on the analysis of the main failures discovered in pavement on steel deck plate and the demanding service condition of the pavement on steel deck, high-temperature rutting test, low-temperature bending test and controlled stress flexural fatigue test are used to study the performance of asphalt mixtures modified by epoxy resin including high-temperature stability, low-temperature cracking-resistance, and fatigue cracking-resistance, which are served to evaluate the modification effect of epoxy resin of different contents. With the addition of epoxy resin, all the three performances are improved greatly. However, when the amount of epoxy resin added is over a certain value, the modification effect will be stable with no extra benefit detected. Finally, in terms of the properties of the three respects, 20%, 30%, 30% are given separately as the proposal adding contents.
基金Specialized Research Fund for the Doctoral Program ofHigher Education(No20070286009)the Preresearch Project of the National Natural Science Foundation of Southeast University ( NoKJ2009388)
文摘The fracture properties of epoxy asphalt mixtures (EAM) are evaluated based on J-integral and ultimate strength. Totally 60 semi-circular bending (SCB)specimens cored from superpave gyratory compactor (SGC)with three groups of notch depths are tested at the temperature of - 10 and 20 ℃. The experimental results reveal good repeatability in EAM characterization. The tensile strength ratio of SCB to the indirect tensile test (IDT) is at a range of 1.4 to 1.7, and the ultimate strength of EAM is exponentially dependent on the notch depths. At the test temperatures, the critical J-integral value of EAM is much higher than that of hot mix asphalt( HMA) with thermoplastic asphalt binder. The response mode of EAM changes from ductile mode to brittle mode and the fracture energy increases 30% when temperature decreases from 20 to - 10℃, while its critical J-integral value decreases only 15%. It is concluded that EAM has better fracture resistance than thermo-plastic HMA; more fracture energy is needed to initiate cracks in EAM at low temperature, and the cracks propagate more rapidly than at room temperature.
基金Program for New Century Excellent Talents in University (No.NCET-08-0118)Specialized Research Fund for the Doctoral Program of Higher Education(No.20090092110049)
文摘In order to study the dynamic performance of the thermosetting epoxy asphalt mixture(EAM), an experimental program on the dynamic modulus E is conducted. First, E of the EAM under different temperatures and frequencies are tested through the simple performance test(SPT), and the effects of temperatures and frequencies on the dynamic modulus of the EAM are analyzed. Secondly, the static modulus of the EAM and the dynamic modulus of other two ordinary mixtures are tested and compared to E of the EAM. Finally the dynamic modulus master curve is constructed using the time-temperature superposition principle. The results show that the E values increase with the increase in the test frequency while on the other hand, the E values decrease with the increase in the test temperature. It also can be seen from the results that the dynamic modulus corresponding to the actual vehicle mode is significantly greater than the static modulus, and the dynamic modulus of the EAM is greater than that of SBS mixtures and the common hot mixed asphalt (HMA). The study results can provide a theoretical basis for the design and mechanical analysis of the steel deck pavement.
基金Project(50578038)supported by the National Natural Science Foundation of China
文摘Crack is found to be a major distress that affects the performance of the epoxy asphalt pavement.An extended finite element method was proposed for investigating the fracture properties of the epoxy asphalt mixture.Firstly,the single-edge notched beam test was used to analyze the temperature effect and calculate the material parameters.Then,the mechanical responses were studied using numerical analysis.It is concluded that 5℃ can be selected as the critical temperature that affects the fracture properties,and numerical simulations indicate that crack propagation is found to significantly affect the stress state of the epoxy asphalt mixture.The maximum principal stress at the crack surface exhibits different trends at various temperatures.Numerical solution of stress intensity factor can well meet the theoretical solution,especially when the temperature is lower than 5℃.
基金Funded by the National Natural Science Foundation of China(No.51178114)the Fundamental Research Funds for the Central Universities(No.CXLX12_0117)the Scientifi c Research Foundation of Graduate School of Southeast University(No.YBJJ1318)
文摘The distributed optical fiber sensing technology was used to investigate the fracture behavior of the Epoxy Asphalt Mixture. The spatial distribution and variation of the strain development with crack propagation were acquired using the brillouin optical time-domain reflectometer through the loading experiments of the composite beam structure. In addition, a finite element model of the composite beam structure was developed to analyze the mechanical responses of the epoxy asphalt mixture using the extended finite element method. The experimental results show that the development of crack propagation becomes instable with the increase of the load, and larger loads will generate deeper cracks. Moreover, the numerical results show that the mechanical response of the crack tip changes with the crack propagation, and the worst areas that subjected to crack damage are located on both sides of the composite beam structure.
文摘环氧沥青是一种热固性材料,具有强度高、高温稳定性好、耐疲劳等优异性能。将环氧沥青混合料作为路面面层,是实现路面耐久性的一种可行方式。将环氧沥青混合料作为路面面层的铺装材料,并降低环氧沥青中环氧组分用量,通过抗压回弹模量试验和应力松弛试验获取环氧沥青混合料的力学参数。基于试验得到的混合料力学参数,设计不同路面结构组合,并使用有限元模拟手段对环氧沥青路面进行结构力学分析和组合优化设计。结果表明:沥青用量为60%和70%的环氧沥青混合料的路用性能和强度显著优于SBS改性沥青混合料。组合3(4 cm 60%EAC-13+4 cm AC-13),组合5(4 cm 70%EAC-13+4 cm 70%EAC-13),组合7(4 cm AC-13+4 cm 60%EAC-13)三种环氧沥青路面结构组合与其他结构组合相比具有较好的力学计算指标和经济性。