期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The Effect of Higher Warming on Vegetation Indices and Biomass Production is Dampened by Greater Drying in an Alpine Meadow on the Northern Tibetan Plateau 被引量:5
1
作者 WANG Jiangwei FU Gang +1 位作者 ZHANG Guangyu SHEN Zhenxi 《Journal of Resources and Ecology》 CSCD 2017年第1期105-112,共8页
In order to understand whether or not the response of vegetation indices and biomass production to warming varies with warming magnitude,an experiment of field warming at two magnitudes was conducted in an alpine mead... In order to understand whether or not the response of vegetation indices and biomass production to warming varies with warming magnitude,an experiment of field warming at two magnitudes was conducted in an alpine meadow on the northern Tibetan Plateau beginning in late June,2013.The normalized difference vegetation index(NDVI),green normalized difference vegetation index(GNDVI) and soil adjusted vegetation index(SAVI) data were obtained using a Tetracam Agricultural Digital Camera in 2013–2014.The gross primary production(GPP) and aboveground plant biomass(AGB) were modeled using the surface measured NDVI and climatic data during the growing seasons(i.e.June–September) in 2013–2014.Both low and high warming significantly increased air temperature by 1.54 and 4.00°C,respectively,and significantly increased vapor pressure deficit by 0.13 and 0.31 kP a,respectively,in 2013-2014.There were no significant differences of GNDVI,AGB and ANPP among the three warming treatments.The high warming significantly reduced average NDVI by 23.3%(-0.06),while the low warming did not affect average NDVI.The low and high warming significantly decreased average SAVI by 19.0%(-0.04) and 27.4%(-0.05),respectively,and average GPP by 24.2%(i.e.0.21 g C m^(-2) d^(-1)) and 44.0%(i.e.0.39 g C m^(–2) d^(-1)),respectively.However,the differences of the average NDVI,SAVI,and GPP between low and high warming were negligible.Our findings suggest that a greater drying may dampen the effect of a higher warming on vegetation indices and biomass production in alpine meadow on the northern Tibetan Plateau. 展开更多
关键词 ANPP GPP NDVI Tibetan Plateau warming magnitude
原文传递
Response of Plant Growth and Biomass Accumulation to Short-term Experimental Warming in a Highland Barley System of the Tibet 被引量:5
2
作者 FU Gang SUN Wei +1 位作者 LI Shaowei ZHONG Zhiming 《Journal of Resources and Ecology》 CSCD 2018年第2期203-208,共6页
Highland barley is an important staple food in the Tibet,and the Tibetan Plateau is experiencing obvious climatic warming.However,few studies have examined the warming effects on highland barley growth and biomass all... Highland barley is an important staple food in the Tibet,and the Tibetan Plateau is experiencing obvious climatic warming.However,few studies have examined the warming effects on highland barley growth and biomass allocation under conditions of controlled experimental warming.This limits our ability to predict how highland barley will change as the climate changes in the future.An experiment of field warming at two magnitudes was performed in a highland barley system of the Tibet beginning in late May,2014.Infrared heaters were used to increase soil temperature.At the end of the warming experiment(September 14,2014),plant growth parameters(plant height,basal diameter,shoot length and leaf number),biomass accumulation parameters(total biomass,root biomass,stem biomass,leaf biomass and spike biomass),and carbon and nitrogen concentration parameters(carbon concentration,nitrogen concentration,the ratio of carbon to nitrogen concentration in root,stem,leaf and spike)were sampled.The low-and high-level experimental warming significantly increased soil perimental warming did not significantly change.The low-and high-level experimental warming did not significantly affect plant growth parameters,biomass accumulation parameters,and carbon and nitrogen concentration parameters.There were also no significant differences of plant growth parameters,biomass accumulation parameters,and carbon and nitrogen concentration parameters between the low-and high-level experimental warming.Our findings suggest that the response of highland barley growth,total and component biomass accumulation,and carbon and nitrogen concentration to warming did not linearly change with warming magnitude in the Tibet. 展开更多
关键词 plant growth infrared radiator Tibetan Plateau warming magnitude
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部